Line arrangements in H3

被引:2
|
作者
Milley, P [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
hyperbolic geometry; non; orientable manifolds;
D O I
10.1090/S0002-9939-05-07875-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If M = H-3/G is a hyperbolic manifold and.. M is a simple closed geodesic, then. lifts to a collection of lines in H-3 acted upon by G. In this paper we show that such a collection of lines cannot contain a particular type of subset ( called a bad triple) unless G has orientation-reversing elements. This fact allows us to extend certain lower bounds on hyperbolic volume to the non-orientable case.
引用
收藏
页码:3115 / 3120
页数:6
相关论文
共 50 条
  • [1] A duality property of Delaunay faces for line arrangements in H3
    Przeworski, Andrew
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (03): : 257 - 273
  • [2] H3
    WRIGHT, HB
    BRITISH MEDICAL JOURNAL, 1959, 1 (MAY23): : 1360 - 1360
  • [3] H3
    GILLHESPY, RO
    CHATTERJEE, AK
    BRITISH MEDICAL JOURNAL, 1959, 2 (DEC12): : 1334 - 1334
  • [4] H3
    不详
    BMJ-BRITISH MEDICAL JOURNAL, 1959, 1 (MAR28): : 872 - 872
  • [5] KERNPHOTOEFFEKT AN H3
    BOSCH, R
    LANG, J
    MULLER, R
    WOLFLI, W
    HELVETICA PHYSICA ACTA, 1965, 38 (08): : 753 - &
  • [6] H3 DEVELOPMENTS
    MARKOWICZ, T
    BRITISH MEDICAL JOURNAL, 1959, 2 (DEC26): : 1487 - 1487
  • [7] H3 AND APRIORITY
    不详
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 1962, 86 (05) : 240 - +
  • [8] KERNPHOTOEFFEKT AN H3
    BOSCH, R
    LANG, J
    MULLER, R
    WOLFLI, W
    HELVETICA PHYSICA ACTA, 1965, 38 (04): : 367 - &
  • [9] H3 DEVELOPMENTS
    不详
    BRITISH MEDICAL JOURNAL, 1959, 2 (DEC12): : 1317 - 1317
  • [10] 大学H3
    黄艺俊
    课堂内外创新作文(高中版), 2019, (10) : 42 - 42