Advance and Prospect for Three-Dimensional Super-Resolution Microscopy

被引:8
|
作者
Wang Xiao [1 ]
Tu Shijie [1 ]
Liu Xin [1 ]
Zhao Yuehan [1 ]
Kuang Cuifang [1 ,2 ,3 ]
Liu Xu [1 ,3 ]
Hao Xiang [1 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Zhejiang, Peoples R China
[3] Zhejiang Lab, Hangzhou 311121, Zhejiang, Peoples R China
关键词
microscopy; fluorescence imaging; super-resolution microscopy; three-dimensional imaging; stimulated emission depletion microscopy; single-molecule localization microscopy; EMISSION DEPLETION MICROSCOPY; MULTIFOCAL PLANE MICROSCOPY; FLUORESCENCE MICROSCOPY; ADAPTIVE OPTICS; MITOCHONDRIAL NUCLEOIDS; DIFFRACTION-LIMIT; STED MICROSCOPY; DNA-PAINT; LOCALIZATION; RESOLUTION;
D O I
10.3788/LOP202158.2200001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Super-resolution microscopy techniques are versatile and powerful tools for visualizing organelle structures, interactions, and protein functions in biomedical research, and its resolution ability to break the optical diffraction limit provides new analytical frameworks for cell biology on the nanoscale, which is indispensable to life science related fields. However, due to the effect of the diffraction limit, the axial resolution of a super-resolution microscope is more arduous to improve than the lateral resolution, which hinders the realization of sub-hundred-nanometer resolution three-dimensional imaging of cellular structures. Therefore, based on the two main techniques, stimulated emission depletion microscopy and single-molecule localization microscopy, the present paper introduces the principles and characteristics of a variety of existing three-dimensional imaging techniques, and finally discusses the future of that. Finally, we briefly discuss the research trend of the two techniques in the three-dimensional imaging area.
引用
收藏
页数:26
相关论文
共 154 条
  • [1] Abbe E, 1873, Archiv Fur Mikroskopische Anatomie, V9, P413, DOI [DOI 10.1007/BF02956173, 10.1007/BF02956173]
  • [2] Abrahamsson S, 2013, NAT METHODS, V10, P60, DOI [10.1038/NMETH.2277, 10.1038/nmeth.2277]
  • [3] Agrawal Anurag, 2020, Microscopy and Microanalysis, V26, P1586, DOI 10.1017/S1431927620018620
  • [4] A simple tissue clearing method for increasing the depth penetration of STED microscopy of fixed brain slices
    Angibaud, Julie
    Mascalchi, Patrice
    Poujol, Christel
    Nagerl, U. Valentin
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (18)
  • [5] Multi-scale sensorless adaptive optics: application to stimulated emission depletion microscopy
    Antonello, Jacopo
    Barbotin, Aurelien
    Chong, Ee Zhuan
    Rittscher, Jens
    Boot, Martin J.
    [J]. OPTICS EXPRESS, 2020, 28 (11) : 16749 - 16763
  • [6] Aquino D, 2011, NAT METHODS, V8, P353, DOI [10.1038/NMETH.1583, 10.1038/nmeth.1583]
  • [7] ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range
    Aristov, Andrey
    Lelandais, Benoit
    Rensen, Elena
    Zimmer, Christophe
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [8] Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy
    Aviles-Espinosa, Rodrigo
    Andilla, Jordi
    Porcar-Guezenec, Rafael
    Olarte, Omar E.
    Nieto, Marta
    Levecq, Xavier
    Artigas, David
    Loza-Alvarez, Pablo
    [J]. BIOMEDICAL OPTICS EXPRESS, 2011, 2 (11): : 3135 - 3149
  • [10] Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil
    Baddeley, David
    Cannell, Mark B.
    Soeller, Christian
    [J]. NANO RESEARCH, 2011, 4 (06) : 589 - 598