Development of an operational high refractive index resist for 193nm immersion lithography

被引:1
|
作者
Zimmenrman, Paul A.
Byers, Jeff
Piscani, Emil
Rice, Bryan
Ober, Christopher K.
Giannelis, Emmanuel P.
Rodriguez, Robert
Wang, Dongyan
Whittaker, Andrew
Blakey, Idriss
Chen, Lan
Dargaville, Bronwin
Liu, Heping
机构
关键词
immersion lithography; refractive index; photoresist; nanoparticles;
D O I
10.1117/12.772871
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Generation-three (Gen-3) immersion lithography offers the promise of enabling the 32nm half-pitch node. For Gen-3 lithography to be successful, however, there must be major breakthroughs in materials development: The hope of obtaining numerical aperture imaging >= 1.70 is dependent on a high index lens, fluid, and resist. Assuming that a fluid and a lens will be identified, this paper focuses on a possible path to a high index resist. Simulations have shown that the index of the resist should be >= 1.9 with any index higher than 1.9 leading to an increased process latitude. Creation of a high index resist from conventional chemistry has been shown to be unrealistic. The answer may be to introduce a high index, polarizable material into a resist that is inert relative to the polymer behavior, but will this too degrade the performance of the overall system? The specific approach is to add very high index (similar to 2.9) nanoparticles to an existing resist system. These nanoparticles have a low absorbance; consequently the imaging of conventional 193nm resists does not degrade. Further, the nanoparticles are on the order of 3nm in diameter, thus minimizing any impact on line edge roughness (LER).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High refractive index immersion fluids for 193nm immersion lithography
    Budhlall, B
    Parris, G
    Zhang, P
    Gao, XP
    Zarkov, Z
    Ross, B
    Kaplan, S
    Burnett, J
    Optical Microlithography XVIII, Pts 1-3, 2005, 5754 : 622 - 629
  • [2] Progress of topcoat and resist development for 193nm immersion lithography
    Ohmori, Katsumi
    Ando, Tomoyuki
    Takayama, Toshikazu
    Ishizuka, Keita
    Yoshida, Masaki
    Utsumi, Yoshiyuki
    Endo, Kotaro
    Iwai, Takeshi
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXIII, PTS 1 AND 2, 2006, 6153 : U734 - U741
  • [3] High index resist for 193 nm immersion lithography
    Matsumoto, Kazuya
    Costner, Elizabeth A.
    Nishimura, Isao
    Ueda, Mitsuru
    Willson, C. Grant
    MACROMOLECULES, 2008, 41 (15) : 5674 - 5680
  • [4] Defect studies of resist process for 193nm immersion lithography
    Ando, Tomoyuki
    Ohmori, Katsumi
    Maemori, Satoshi
    Takayama, Toshikazu
    Ishizuka, Keita
    Yoshida, Masaaki
    Hirano, Tomoyuki
    Yokoya, Jiro
    Nakano, Katsushi
    Fujiwara, Tomoharu
    Owa, Soichi
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXIII, PTS 1 AND 2, 2006, 6153 : U203 - U210
  • [5] Development of fluoropolymer for 193nm immersion lithography
    Shirota, Naoko
    Takebe, Yoko
    Sasaki, Takashi
    Yokokoji, Osamu
    Toriumi, Minoru
    Masuhara, Hiroshi
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXIII, PTS 1 AND 2, 2006, 6153 : U773 - U782
  • [6] Synthesis of high refractive index sulfur containing polymers for 193nm immersion lithography; A progress report
    Blakey, Idriss
    Conley, Will
    George, Graeme A.
    Hill, David J. T.
    Liu, Heping
    Rasoul, Firas
    Whittaker, Andrew K.
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXIII, PTS 1 AND 2, 2006, 6153 : U272 - U281
  • [7] Immersion lithography fluids for high NA 193nm lithography
    Zhou, JM
    Fan, YF
    Bourov, A
    Lafferty, N
    Cropanese, F
    Zavyalova, L
    Estroff, A
    Smith, BW
    Optical Microlithography XVIII, Pts 1-3, 2005, 5754 : 630 - 637
  • [8] Resist challenges for 193nm lithography.
    Bowden, MJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U427 - U427
  • [9] Extension Options for 193nm Immersion Lithography
    Zimmerman, Paul A.
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2009, 22 (05) : 625 - 634
  • [10] Study on 193nm immersion interference lithography
    Wang, LA
    Chang, WC
    Chi, KY
    Liu, SK
    Lee, CD
    MICROMACHINING TECHNOLOGY FOR MICRO-OPTICS AND NANO-OPTICS III, 2005, 5720 : 94 - 108