A Real Time Extreme Learning Machine for Software Development Effort Estimation

被引:0
|
作者
Pillai, Kanakasabhapathi [1 ]
Jeyakumar, Muthayyan [2 ]
机构
[1] Kalaivanar Nagercoil Sudalaimuthu Krishnan Coll E, Dept Elect & Elect Engn, Nagercoil, Tamil Nadu, India
[2] Noorul Islam Univ, Dept Comp Applicat, Kanyakumari, Tamil Nadu, India
关键词
Software effort estimation; extreme learning machine; real time; radial basis function;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software development effort estimation always remains a challenging task for project managers in a software industry. New techniques are applied to estimate effort. Evaluation of accuracy is a major activity as many methods are proposed in the literature. Here, we have developed a new algorithm called Real Time Extreme Learning Machine (RT-ELM) based on online sequential learning algorithm. The online sequential learning algorithm is modified so that the extreme learning machine learns continuously as new projects are developed in a software development organization. Performance of the real time extreme learning machine is compared with training and testing methodology. Studies were also conducted using radial basis function and additive hidden node. The accuracy of the Real time Extreme Learning machine with continuous learning is better than the conventional training and testing method. The results also indicate that the performance of radial basis function and additive hidden nodes is data dependent. The results are validated using data from academic setting and industry.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [1] Extreme Learning Machine Applied to Software Development Effort Estimation
    Pereira de Carvalho, Halcyon Davys
    Fagundes, Roberta
    Santos, Wylliams
    IEEE ACCESS, 2021, 9 : 92676 - 92687
  • [2] Extreme Learning Machine for Software Development Effort Estimation of Small Programs
    Pillai, S. K.
    Jeyakumar, M. K.
    2014 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2014), 2014, : 1698 - 1703
  • [3] An Extreme Learning Machine based Approach for Software Effort Estimation
    Shukla, Suyash
    Kumar, Sandeep
    ENASE: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, 2021, : 47 - 57
  • [4] Using Machine Learning Technique for Effort Estimation in Software Development
    Amaral, Weldson
    Braz Junior, Geraldo
    Rivero, Luis
    Viana, Davi
    SBQS: PROCEEDINGS OF THE 18TH BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY, 2019, : 240 - 245
  • [5] An approach to software development effort estimation using machine learning
    Ionescu, Vlad-Sebastian
    2017 13TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2017, : 197 - 203
  • [6] Effort Estimation for Embedded Software Development Projects by Combining Machine Learning with Classification
    Iwata, Kazunori
    Nakashima, Toyoshiro
    Anan, Yoshiyuki
    Ishii, Naohiro
    2016 4TH INTL CONF ON APPLIED COMPUTING AND INFORMATION TECHNOLOGY/3RD INTL CONF ON COMPUTATIONAL SCIENCE/INTELLIGENCE AND APPLIED INFORMATICS/1ST INTL CONF ON BIG DATA, CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (ACIT-CSII-BCD), 2016, : 265 - 270
  • [7] Natural Language Processing and Machine Learning Methods for Software Development Effort Estimation
    Ionescu, Vlad-Sebastian
    Demian, Horia
    Czibula, Istvan-Gergely
    STUDIES IN INFORMATICS AND CONTROL, 2017, 26 (02): : 219 - 228
  • [8] Software Effort Estimation using Machine Learning Techniques
    Monika
    Sangwan, Om Prakash
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), 2017, : 92 - 98
  • [9] Software effort estimation using machine learning methods
    Baskeles, Bilge
    Turhan, Burak
    Bener, Ayse
    2007 22ND INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2007, : 208 - 213
  • [10] Software Effort Estimation using Machine Learning Technique
    Rahman, Mizanur
    Roy, Partha Protim
    Ali, Mohammad
    Goncalves, Teresa
    Sarwar, Hasan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 822 - 827