Discovery of anomalous behaviour in temporal networks

被引:18
|
作者
Vigliotti, Maria Grazia [1 ]
Hankin, Chris [1 ,2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2BZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Secur, London SW7 2BZ, England
基金
英国工程与自然科学研究理事会;
关键词
Statistical analysis; Social network analysis; Discrete time model; Social media;
D O I
10.1016/j.socnet.2014.12.001
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
In this work we consider the problem of detecting anomalous behaviour and present a novel approach that allows 'behaviour' to be classified as either to be normal or abnormal by checking the p-value associated with the occurrence of the behaviour which is modelled following a binomial distribution within a discrete time model. We investigate the problem of detecting anomalous behaviour by looking at how communication evolves over time in a social network graph. Under the assumption that some nodes of the network could be labelled qualitatively, we present a novel approach that allows us to infer a subset of nodes of the social network which might share the same qualitative connotation. In other words, assuming one or more members belong to some criminal organisation, we wish to investigate how many other persons belong to the same organisation. We have tested our method in two datasets, VAST2008 and a Twitter Dataset (data collected in 2012), with encouraging results. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:18 / 25
页数:8
相关论文
共 50 条
  • [1] ANOMALOUS TEMPORAL BEHAVIOUR OF NP 0532
    RAMATY, R
    HOLT, SS
    NATURE, 1969, 224 (5223) : 1003 - &
  • [2] Unsupervised Discovery of Activities and their Temporal Behaviour
    Faruquie, Tanveer A.
    Banerjee, Subhashis
    Kalra, Prem K.
    2012 IEEE NINTH INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL-BASED SURVEILLANCE (AVSS), 2012, : 100 - 105
  • [3] MODIT: MOtif DIscovery in Temporal Networks
    Grasso, Roberto
    Micale, Giovanni
    Ferro, Alfredo
    Pulvirenti, Alfredo
    FRONTIERS IN BIG DATA, 2022, 4
  • [4] Dense Sub-networks Discovery in Temporal Networks
    Dondi R.
    Hosseinzadeh M.M.
    SN Computer Science, 2021, 2 (3)
  • [5] Identifying Buzzing Stories via Anomalous Temporal Subgraph Discovery
    Bonchi, Francesco
    Bordino, Ilaria
    Gullo, Francesco
    Stilo, Giovanni
    2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), 2016, : 161 - 168
  • [6] Unsupervised Online Activity Discovery Using Temporal Behaviour Assumption
    Gjoreski, Hristijan
    Roggen, Daniel
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (ISWC 17), 2017, : 42 - 49
  • [7] Motif discovery algorithms in static and temporal networks: A survey
    Jazayeri, Ali
    Yang, Christopher C.
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (04)
  • [8] Braid Manifold Discovery using Temporal Graph Networks
    Christensen, Andrew
    Sen Gupta, Ananya
    Kirsteins, Ivars
    2022 OCEANS HAMPTON ROADS, 2022,
  • [9] Discovery of anomalous spatio-temporal windows using discretized spatio-temporal scan statistics
    Janeja V.P.
    Gangopadhyay A.
    Mohammadi S.
    Palanisamy R.
    Statistical Analysis and Data Mining, 2011, 4 (03): : 276 - 300
  • [10] When Recommendation Goes Wrong - Anomalous Link Discovery in Recommendation Networks
    Perozzi, Bryan
    Schueppert, Michael
    Saalweachter, Jack
    Thakur, Mayur
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 569 - 578