Collective dynamics of coherent motile cells on curved surfaces

被引:20
|
作者
Lin, Shao-Zhen [1 ]
Li, Yue [2 ]
Ji, Jing [3 ,4 ]
Li, Bo [1 ]
Feng, Xi-Qiao [1 ]
机构
[1] Tsinghua Univ, Inst Biomech & Med Engn, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Beihang Univ, Sch Biol Sci & Med Engn, Key Lab Biomech & Mechanobiol, Minist Educ, Beijing 100083, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MIGRATION; FORCES; MORPHOGENESIS; FLUCTUATIONS; GUIDANCE; ORDER;
D O I
10.1039/c9sm02375e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cellular dynamic behaviors in organ morphogenesis and embryogenesis are affected by geometrical constraints. In this paper, we investigate how the surface topology and curvature of the underlying substrate tailor collective cell migration. An active vertex model is developed to explore the collective dynamics of coherent cells crawling on curved surfaces. We show that cells can self-organize into rich dynamic patterns including local swirling, global rotation, spiral crawling, serpentine crawling, and directed migration, depending on the interplay between cell-cell interactions and geometric constraints. Increasing substrate curvature results in higher cell-cell bending energy and thus tends to suppress local swirling and enhance density fluctuations. Substrate topology is revealed to regulate both the collective migration modes and density fluctuations of cell populations. In addition, upon increasing noise intensity, a Kosterlitz-Thouless-like ordering transition can emerge on both undevelopable and developable surfaces. This study paves the way to investigate various in vivo morphomechanics that involve surface curvature and topology.
引用
收藏
页码:2941 / 2952
页数:12
相关论文
共 50 条
  • [1] Emergence of Collective Dynamics in Systems of Motile Cilia
    Cicuta, Pietro
    Bruot, Nicolas
    Kotar, Jurij
    Debono, Luke
    Phillips, Dave
    Box, Stuart
    Simpson, Stephen
    Hanna, Simon
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 243A - 243A
  • [2] Assessing the Collective Dynamics of Motile Cilia in Cultures of Human Airway Cells by Multiscale DDM
    Feriani, Luigi
    Juenet, Maya
    Fowler, Cedar J.
    Bruot, Nicolas
    Chioccioli, Maurizio
    Holland, Steven M.
    Bryant, Clare E.
    Cicuta, Pietro
    BIOPHYSICAL JOURNAL, 2017, 113 (01) : 109 - 119
  • [3] Collective cell polarization and alignment on curved surfaces
    Lin, Cheng
    Xu, Jiayi
    He, Shijie
    Zhang, Wanjun
    Li, Huiqi
    Huo, Bo
    Ji, Baohua
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 88 : 330 - 339
  • [4] Crystallization dynamics on curved surfaces
    Garcia, Nicolas A.
    Register, Richard A.
    Vega, Daniel A.
    Gomez, Leopoldo R.
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [5] Phase separation dynamics on curved surfaces
    Marenduzzo, Davide
    Orlandini, Enzo
    SOFT MATTER, 2013, 9 (04) : 1178 - 1187
  • [6] A Method for Molecular Dynamics on Curved Surfaces
    Paquay, Stefan
    Kusters, Remy
    BIOPHYSICAL JOURNAL, 2016, 110 (06) : 1226 - 1233
  • [7] A computational model of the collective fluid dynamics of motile micro-organisms
    Hopkins, MM
    Fauci, LJ
    JOURNAL OF FLUID MECHANICS, 2002, 455 : 149 - 174
  • [8] Collective Dynamics and Coherent Neutron Scattering in GFP
    Nickels, Jonathan D.
    Perticaroli, Stefania
    Ehlers, Georg
    O'Neill, Hugh
    Sokolov, Alexei P.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 460A - 460A
  • [9] Coherent neutron scattering and collective dynamics on mesoscale
    Novikov, V. N.
    Schweizer, K. S.
    Sokolov, A. P.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (16):
  • [10] NUCLEAR COLLECTIVE ROTATIONS AND COHERENT STATE DYNAMICS
    BROECKHOVE, J
    KESTELOOT, E
    VANLEUVEN, P
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1988, 331 (03): : 255 - 264