Kimesurface representation and tensor linear modeling of longitudinal data

被引:1
|
作者
Zhang, Rongqian [1 ,4 ]
Zhang, Yupeng [2 ,4 ]
Liu, Yuyao [1 ,4 ]
Guo, Yunjie [3 ,4 ]
Shen, Yueyang [3 ,4 ]
Deng, Daxuan [3 ,4 ]
Qiu, Yongkai Joshua [2 ,4 ]
Dinov, Ivo D. [4 ,5 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Elect & Comp Engn Div, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Hlth Behav & Biol Sci, Stat Online Computat Resource, 426 N Ingalls Str, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 08期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Spacekime analytics; Longitudinal data; AI; Data science; Complex time; Kimesurface;
D O I
10.1007/s00521-021-06789-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many modern techniques for analyzing time-varying longitudinal data rely on parametric models to interrogate the time-courses of univariate or multivariate processes. Typical analytic objectives include utilizing retrospective observations to model current trends, predict prospective trajectories, derive categorical traits, or characterize various relations. Among the many mathematical, statistical, and computational strategies for analyzing longitudinal data, tensor-based linear modeling offers a unique algebraic approach that encodes different characterizations of the observed measurements in terms of state indices. This paper introduces a new method of representing, modeling, and analyzing repeated-measurement longitudinal data using a generalization of event order from the positive reals to the complex plane. Using complex time (kime), we transform classical time-varying signals as 2D manifolds called kimesurfaces. This kime characterization extends the classical protocols for analyzing time-series data and offers unique opportunities to design novel inference, prediction, classification, and regression techniques based on the corresponding kimesurface manifolds. We define complex time and illustrate alternative time-series to kimesurface transformations. Using the Laplace transform and its inverse, we demonstrate the bijective mapping between time-series and kimesurfaces. A proposed general tensor regression based linear model is validated using functional Magnetic Resonance Imaging data. This kimesurface representation method can be used with a wide range of machine learning algorithms, artificial intelligence tools, analytical approaches, and inferential techniques to interrogate multivariate, complex-domain, and complex-range longitudinal processes.
引用
收藏
页码:6377 / 6396
页数:20
相关论文
共 50 条
  • [1] Kimesurface representation and tensor linear modeling of longitudinal data
    Rongqian Zhang
    Yupeng Zhang
    Yuyao Liu
    Yunjie Guo
    Yueyang Shen
    Daxuan Deng
    Yongkai Joshua Qiu
    Ivo D. Dinov
    Neural Computing and Applications, 2022, 34 : 6377 - 6396
  • [2] Probabilistic Linear Discriminant Analysis With Vectorial Representation for Tensor Data
    Ju, Fujiao
    Sun, Yanfeng
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (10) : 2938 - 2950
  • [3] On a representation of the linear strain tensor
    Borodachev, N.M.
    Strength of Materials, 1999, 31 (03): : 286 - 291
  • [4] On a representation of the linear strain tensor
    Borodachev N.M.
    Strength of Materials, 1999, 31 (3) : 286 - 291
  • [5] Multi-dimensional data representation using linear tensor coding
    Qiao, Xu
    Liu, Xiaoqing
    Chen, Yen-wei
    Liu, Zhi-Ping
    IET IMAGE PROCESSING, 2017, 11 (07) : 492 - 501
  • [6] On one representation of the linear strain tensor
    Borodachev, N.M.
    Problemy Prochnosti, 1999, (03): : 88 - 94
  • [7] ON THE REPRESENTATION THEOREM FOR LINEAR, ISOTROPIC TENSOR FUNCTIONS
    PERICAKSPECTOR, KA
    SPECTOR, SJ
    JOURNAL OF ELASTICITY, 1995, 39 (02) : 181 - 185
  • [8] On the representation theorem for linear, isotropic tensor functions
    Pericak-Spector, K.A., 1600, Kluwer Academic Publishers, Dordrecht, Netherlands (39):
  • [9] Hierarchical linear modeling in organizational research - Longitudinal data outside the context of growth modeling
    Schonfeld, Irvin Sam
    Rindskopf, David
    ORGANIZATIONAL RESEARCH METHODS, 2007, 10 (03) : 417 - 429
  • [10] Linear mixed models for longitudinal shape data with applications to facial modeling
    Barry, Sarah J. E.
    Bowman, Adrian W.
    BIOSTATISTICS, 2008, 9 (03) : 555 - 565