Microalgae are a promising source of bioactive ingredients for the food, pharmaceutical and cosmetic industries. Every microalgae research group or production facility is facing one major problem regarding the potential contamination of the algal cell with bacteria. Prior to the storage of the microalgae in strain collections or to cultivation in bioreactors, it is necessary to carry out laborious purification procedures to separate the microalgae from the undesired bacterial cells. In this work, we present a disposable microfluidic cartridge for the high-throughput purification of microalgae samples based on inertial microfluidics. Some of the most relevant microalgae strains have a larger size than the relatively small, few micron bacterial cells, so making them distinguishable by size. The inertial microfluidic cartridge was fabricated with inexpensive materials, like pressure sensitive adhesive (PSA) and thin plastic layers, which were patterned using a simple cutting plotter. In spite of fabrication restrictions and the intrinsic difficulties of biological samples, the separation of microalgae from bacteria reached values in excess of 99%, previously only achieved using conventional high-end and high cost lithography methods. Moreover, due to the simple and high-throughput characteristic of the separation, it is possible to concatenate serial purification to exponentially decrease the absolute amount of bacteria in the final purified sample.