Kinetics of active α-glucoside transport in Saccharomyces cerevisiae

被引:27
|
作者
Stambuk, Boris U. [1 ,2 ]
de Araujo, Pedro S. [2 ]
机构
[1] Univ Fed Santa Catarina, Ctr Ciencias Biol, Dept Bioquim, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-01498 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
transport kinetics; maltose; trehalose; maltotriose; AGT1; permease; MAL21;
D O I
10.1016/S1567-1356(01)00007-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
alpha-Glucosides are the most abundant fermentable sugars in the industrial applications of Saccharomyces cerevisiae, and the active transport across the plasma membrane is the rate-limiting step for their metabolism. In this report we performed a detailed kinetic analysis of the active alpha-glucoside transport system(s) present in a wild-type strain, and in strains with defined alpha-glucoside permeases. Our results indicate that the wild-type strain harbors active transporters with high and low affinity for maltose and trehalose, and low-affinity transport systems for maltotriose and alpha-methylglucoside. The maltose permease encoded by the MAL21 gene showed a high affinity (K-m similar to 5 mM) for maltose, and a low affinity (K-m similar to 90 mM) for trehalose. On the other hand, the alpha-glucoside permease encoded by the AGT1 gene had a high affinity (K-m similar to 7 mM) for trehalose, a low affinity (K-m similar to 18 mM) for maltose and maltotriose, and a very low affinity (K-m similar to 35 mM) for alpha-methylglucoside.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [1] Active α-glucoside transport in Saccharomyces cerevisiae
    Stambuk, BU
    da Silva, MA
    Panek, AD
    de Araujo, PS
    FEMS MICROBIOLOGY LETTERS, 1999, 170 (01) : 105 - 110
  • [2] Colorimetric determination of active α-glucoside transport in Saccharomyces cerevisiae
    Hollatz, C
    Stambuk, BU
    JOURNAL OF MICROBIOLOGICAL METHODS, 2001, 46 (03) : 253 - 259
  • [3] Kinetics of active sucrose transport in Saccharomyces cerevisiae
    Stambuk, BU
    Batista, AS
    De Araujo, PS
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2000, 89 (02) : 212 - 214
  • [4] In vivo nuclear transport kinetics in Saccharomyces cerevisiae
    Roberts, PM
    Goldfarb, DS
    METHODS IN CELL BIOLOGY, VOL 53: NUCLEAR STRUCTURE AND FUNCTION, 1998, 53 : 545 - 557
  • [5] Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae
    Stambuk, BU
    deAraujo, PS
    Panek, AD
    Serrano, R
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 237 (03): : 876 - 881
  • [6] Sucrose active transport and fermentation be Saccharomyces cerevisiae
    Badotti, Fernanda
    Batista, Anderson S.
    Stambuk, Boris U.
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2006, 49 : 115 - 123
  • [7] ACTIVE SULFATE TRANSPORT IN SACCHAROMYCES-CEREVISIAE
    MCCREADY, RG
    DIN, GA
    FEBS LETTERS, 1974, 38 (03) : 361 - 363
  • [8] ACTIVE-TRANSPORT OF DIMETHIALIUM IN SACCHAROMYCES-CEREVISIAE
    IWASHIMA, A
    NISHIMURA, H
    SEMPUKU, K
    EXPERIENTIA, 1980, 36 (04): : 385 - 386
  • [9] Maltose and maltotriose active transport and fermentation by Saccharomyces cerevisiae
    Alves, Sergio L., Jr.
    Herberts, Ricardo A.
    Hollatz, Claudia
    Miletti, Luiz C.
    Stambuk, Boris U.
    JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS, 2007, 65 (02) : 99 - 104
  • [10] Active transport of potassium and the structures of the TRK proteins in the yeast, Saccharomyces cerevisiae
    Slayman, CL
    Bertl, A
    Bihler, H
    Durell, SR
    Guy, HR
    JOURNAL OF GENERAL PHYSIOLOGY, 2000, 116 (01): : 24A - 24A