Finite Volume Method for Well-Driven Groundwater Flow

被引:0
|
作者
Dotlic, Milan [1 ]
Vidovic, Dragan [1 ]
Dimkic, Milan [1 ]
Pusic, Milenko [2 ]
Radanovic, Jovana [1 ]
机构
[1] Jaroslav Cerni Inst, Jaroslava Cernog 80, Belgrade 11226, Serbia
[2] Univ Belgrade, Fac Mining & Geolog, Belgrade 11000, Serbia
关键词
Finite volume method; well-driven flow; porous media; privileged routes; ld elements;
D O I
10.1007/978-3-642-20671-9_38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite volume method for well-driven porous media flow which uses a computational mesh tailored for finite elements is presented. It replaces onedimensional elements used to model well drains in the original mesh with one-dimensional cells. It does not modify the original mesh by adding or moving nodes. It can handle the discontinuous anisotropic hydraulic conductivity. Special discretization of the flux between the porous medium and the drain is proposed. Numerical results are compared to an analytical solution.
引用
收藏
页码:361 / +
页数:2
相关论文
共 50 条
  • [1] Second-order accurate finite volume method for well-driven flows
    Dotlic, M.
    Vidovic, D.
    Pokorni, B.
    Pusic, M.
    Dimkic, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 460 - 475
  • [2] Finite Volume Methods for Well-Driven Flows in Anisotropic Porous Media
    Dotlic, Milan
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (04) : 473 - 483
  • [3] A modified multiscale finite element method for well-driven flow problems in heterogeneous porous media
    He, Xinguang
    Ren, Li
    JOURNAL OF HYDROLOGY, 2006, 329 (3-4) : 674 - 684
  • [4] Finite Volume Method and Accuracy of Groundwater Flow Models
    Loudyi, Dalila
    Falconer, Roger
    Lin, Binliang
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2015, (02): : 39 - 44
  • [5] Well-driven floating gate transistors
    Mondragón-Torres, AF
    Schneider, MC
    Sánchez-Sinencio, E
    ELECTRONICS LETTERS, 2002, 38 (11) : 530 - 532
  • [6] Error Estimates of Finite Volume Element Method for the Pollution in Groundwater Flow
    Zhang, Zhiyue
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (02) : 259 - 274
  • [7] Well modeling in the multiscale finite volume method for subsurface flow simulation
    Wolfsteiner, Christian
    Lee, Seong H.
    Tchelepi, Hamdi A.
    MULTISCALE MODELING & SIMULATION, 2006, 5 (03): : 900 - 917
  • [8] Correction method for well-driven seismic velocity model and its application in LWD processing
    Sun J.
    Xu X.
    Kou L.
    Wang J.
    Liu J.
    Li H.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (06): : 1279 - 1285
  • [9] Finite volume multiscale finite element method for solving the groundwater flow problems in heterogeneous porous media
    He, XG
    Ren, L
    WATER RESOURCES RESEARCH, 2005, 41 (10) : W10417 - 1
  • [10] A multiscale multilevel mimetic (M3) method for well-driven flows in porous media
    Lipnikov, Konstantin
    Moulton, J. David
    Svyatskiy, Daniil
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 771 - 779