A lower bound for the inf-sup condition's constant for the divergence operator

被引:0
|
作者
Del Pino, Stephane [1 ]
Razafison, Ulrich [2 ]
Yakoubi, Driss [2 ]
机构
[1] CEA, Dam Ile de France, Dept Sci Simulat & Informat, F-91297 Bruyeres Le Chatel, Arpajon, France
[2] Univ Paris 06, UPMC, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
D O I
10.1016/j.crma.2008.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The inf-sup condition plays an important role in problems from fluid mechanics. The purpose of this Note is to give, for any connected bounded open set omega with a Lipschitz-continuous boundary, a lower bound for the inf-sup condition's constant that only depends on the norm of the harmonic trace lifting on omega and on the sup(Omega superset of(omega) over bar) beta(Omega)/c(p)(Omega) where c(p)(Omega) > 1 is a constant defined by parallel to upsilon parallel to(H1(Omega)) <= c(p)(Omega)vertical bar upsilon vertical bar(H1(Omega)).
引用
收藏
页码:533 / 538
页数:6
相关论文
共 50 条