Stone-Wales Rearrangements in Polycyclic Aromatic Hydrocarbons: A Computational Study

被引:25
|
作者
Brayfindley, Evangelina [1 ]
Irace, Erica E. [1 ]
Castro, Claire [1 ]
Karney, William L. [1 ,2 ]
机构
[1] Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA
[2] Univ San Francisco, Dept Environm Sci, San Francisco, CA 94117 USA
来源
JOURNAL OF ORGANIC CHEMISTRY | 2015年 / 80卷 / 08期
基金
美国国家科学基金会;
关键词
ISOMERIZATION; SURFACE;
D O I
10.1021/acs.joc.5b00066
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Mechanisms for Stone-Wales rearrangements (SWRs) in polycyclic unsaturated hydrocarbons containing a pentafulvalene core have been studied using density functional, coupled cluster, and multiconfigurational methods. At the BD(T)/cc-pVDZ//(U)M06-2X/cc-pVDZ level of theory, free energies of activation (at 1000 degrees C) range from ca. 70 kcal/mol for the model system pentafulvalene ? naphthalene (1 -> 2) to >110 kcal/mol for the degenerate SWR of pyracyclene (3). Systems studied that do not contain a pyracyclene subunit are predicted to have Delta G(double dagger) less than about 90 kcal/mol and to proceed by a carbene-type mechanism. Substrates containing a pyracyclene subunit should proceed via a cyclobutyl mechanism, and appropriate benzannelation of 3 lowers the activation free energy considerably. Computed Delta G(double dagger) values are consistent with experimental observations reported for known systems. SWRs of two untested substrates, cyclopent[fg]aceanthrylene (18) and dicyclopenta[fg,op]tetracene (21), are predicted to have Delta G(double dagger) < 95 kcal/mol and thus to be accessible via flash vacuum pyrolysis.
引用
收藏
页码:3825 / 3831
页数:7
相关论文
共 50 条
  • [1] Computational modeling of the elemental catalysis in the Stone-Wales fullerene rearrangements
    Slanina, Z
    Zhao, X
    Uhlík, F
    Ozawa, M
    Osawa, E
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2000, 599 (01) : 57 - 61
  • [2] Stone-Wales Rearrangements in Hydrocarbons: From Planar to Bowl-Shaped Substrates
    Irace, Erica E.
    Brayfindley, Evangelina
    Vinnacombe, Gail A.
    Castro, Claire
    Karney, William L.
    JOURNAL OF ORGANIC CHEMISTRY, 2015, 80 (23): : 11718 - 11725
  • [3] Radical-promoted stone-wales rearrangements
    Alder, RW
    Harvey, JN
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (08) : 2490 - 2494
  • [4] Stone-Wales rearrangements involving heptagonal defects
    Toyohashi Univ of Technology, Toyohashi, Japan
    Fullerene Sci Technol, 5 (939-961):
  • [5] Radical-Promoted Stone-Wales Rearrangements
    Alder, R.W. (rog.alder@bris.ac.uk), 1600, American Chemical Society (126):
  • [6] Stone-Wales rearrangements involving heptagonal defects
    Osawa, E
    Honda, K
    FULLERENE SCIENCE AND TECHNOLOGY, 1996, 4 (05): : 939 - 961
  • [7] Computational study of the Stone-Wales transformation in C36
    Jin, YF
    Hao, C
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (12): : 2875 - 2877
  • [8] Continuous chirality analysis of model Stone-Wales rearrangements in fullerenes
    Hebrew Univ of Jerusalem, Jerusalem, Israel
    J Phys Chem B, 30 (5776-5784):
  • [9] Continuous chirality analysis of model Stone-Wales rearrangements in fullerenes
    Pinto, Y
    Fowler, PW
    Mitchell, D
    Avnir, D
    JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (30): : 5776 - 5784
  • [10] Bilayer armchair graphene nanoribbon photodetector with Stone-Wales defect: A computational study
    Rudi, Somayeh Gholami
    Soleimani-Amiri, Samaneh
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 150