In-situ strain induced martensitic transformation measurement and consequences for the modeling of medium Mn stainless steels mechanical behavior a

被引:10
|
作者
Janeiro, Ilusca [1 ,2 ,3 ]
Hubert, Olivier [1 ]
Schmitt, Jean-Hubert [1 ]
机构
[1] Univ Paris Saclay, Centralesupelec, F-91190 Gif sur yvette, France
[2] Aperam Stainless Steel Res Ctr, Isbergues, France
[3] PSL Res Univ, Ctr mise forme materiaux, Mines ParisTech, CS 10207 Rue Claude Daunesse, Sophia Antipolis, France
关键词
Stainless Steels; Strain induced martensitic transformation; In-situ magnetic measurements modeling; MAGNETIC-PROPERTIES; MAGNETOELASTIC BEHAVIOR; HYDROGEN EMBRITTLEMENT; RETAINED AUSTENITE; TRIP; DEFORMATION; TEMPERATURE; PHASES;
D O I
10.1016/j.ijplas.2022.103248
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work aims at studying the control of medium manganese austenitic stainless steels' mechanical behavior and austenite to martensite transformation via chemical composition. Six grades of austenitic stainless steel were cast with chemical compositions variations small enough able to keep relatively constant the stacking fault energy (SFE) value, but high enough to change the martensitic start temperature Ms. These experiments allow the effect of the martensite transformation on the mechanical behavior in tension to be compared while the austenitic mechanical behavior is almost unchanged. Tensile tests were performed at room temperature and at a low strain rate (10(-4) s(-1)). In-situ magnetic measurement is implemented to quantify the martensite volume fraction evolution with strain. Strain heterogeneities are detected by digital image correlation (DIC) analysis. For all grades, stress-strain curves exhibit Portevin-le-Chatelier (PLC) phenomenon related to localized martensite transformation within the deformation bands. For the two most unstable alloys, a Luders plateau is detected at the yield stress. The martensite evolution is modeled using the Olson-Cohen approach, which confirms slower kinetics for the most stable grades. Moreover, it is shown that the martensite fraction evolves linearly with stress after a stress threshold function of the austenite stability represented by Ms. The martensite volume fraction vs stress slope is constant whatever the composition. This result leads to the development of a coupled metallurgical/mechanical model which depends on a single parameter Ms related to the chemical composition.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Strain-induced martensitic transformation in textured austenitic stainless steels
    Mertinger, V.
    Nagy, E.
    Tranta, F.
    Solyom, J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 481 : 718 - 722
  • [2] Strain induced martensitic transformation at high strain rate in two austenitic stainless steels
    Nanga, S.
    Pineau, A.
    Tanguy, B.
    Naze, L.
    Santacreu, P-O
    DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 2, 2009, : 1023 - +
  • [3] In-situ evaluation of Luders band associated with martensitic transformation in a medium Mn transformation-induced plasticity steel
    Wang, X. G.
    Wang, L.
    Huang, M. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 674 : 59 - 63
  • [4] In-Situ Investigation of Strain-Induced Martensitic Transformation Kinetics in an Austenitic Stainless Steel by Inductive Measurements
    Celada-Casero, Carola
    Kooiker, Harm
    Groen, Manso
    Post, Jan
    San-Martin, David
    METALS, 2017, 7 (07)
  • [5] MICROSTRUCTURAL FEATURES OF STRAIN-INDUCED MARTENSITIC TRANSFORMATION IN MEDIUM-Mn STEELS WITH METASTABLE RETAINED AUSTENITE
    Grajcar, A.
    Kilarski, A.
    Radwanski, K.
    Swadzba, R.
    ARCHIVES OF METALLURGY AND MATERIALS, 2014, 59 (04) : 1673 - 1678
  • [6] Reverse Transformation Behavior in Multi-phased Medium Mn Martensitic Steel Analyzed by in-situ Neutron Diffraction
    Matsuda, Kyosuke
    Masumura, Takuro
    Tsuchiyama, Toshihiro
    Onuki, Yusuke
    Takanash, Misa
    Maeda, Takuya
    Kawamoto, Yuzo
    Shirahata, Hiroyuki
    Uemori, Ryuji
    ISIJ INTERNATIONAL, 2024, 64 (02) : 486 - 490
  • [7] Reverse strain-induced martensitic transformation of the ferrite to austenite in duplex stainless steels
    Forgas Junior, Arnaldo
    Marangoni, Julia
    Otubo, Jorge
    Bolognesi Donato, Gustavo Henrique
    Magnabosco, Rodrigo
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (23) : 10452 - 10463
  • [8] Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel
    Hedstrom, Peter
    Lienert, Ulrich
    Almer, Jon
    Oden, Magnus
    SCRIPTA MATERIALIA, 2007, 56 (03) : 213 - 216
  • [9] Effect of Strain-induced Martensitic Transformation on Coaxing Effect of Austenitic Stainless Steels
    Jung, Jae Woong
    Makajima, Masaki
    Uematsu, Yoshihiko
    Tokaji, Keiro
    Akita, Masayuki
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VII, 2008, 385-387 : 505 - +
  • [10] Reverse strain-induced martensitic transformation of the ferrite to austenite in duplex stainless steels
    Arnaldo Forgas Júnior
    Julia Marangoni
    Jorge Otubo
    Gustavo Henrique Bolognesi Donato
    Rodrigo Magnabosco
    Journal of Materials Science, 2016, 51 : 10452 - 10463