On the Second Homotopy Group of Spaces of Commuting Elements in Lie Groups

被引:1
|
作者
Adem, Alejandro [1 ]
Manuel Gomez, Jose [2 ]
Gritschacher, Simon [3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Nacl Colombia Sede Medellin, Escuela Matemat, Medellin 050034, Colombia
[3] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
G-BUNDLES; COHOMOLOGY; MODULI; TUPLES;
D O I
10.1093/imrn/rnab259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact connected Lie group and n >= 1 an integer. Consider the space of ordered commuting n-tuples in G, Hom(Z(n), G), and its quotient under the adjoint action, Rep (Z(n), G) := Hom(Z(n), G)/ G. In this article, we study and in many cases compute the homotopy groups pi(2)(Hom(Z(2), G)). For G simply connected and simple, we show that pi(2)(Hom(Z(2), G)) congruent to Z and pi(2)(Rep(Z(2), G)) congruent to Z and that on these groups the quotient map Hom(Z(2), G) -> Rep(Z(2), G) induces multiplication by the Dynkin index of G. More generally, we show that if G is simple and Hom(Z(2), G)(1) subset of Hom(Z(2), G) is the path component of the trivial homomorphism, then H-2(Hom(Z(2), G)(1); Z) is an extension of the Schur multiplier of pi(1)(G)(2) by Z. We apply our computations to prove that if B(com)G(1) is the classifying space for commutativity at the identity component, then pi(4)(B(com)G(1)) congruent to Z circle plus Z, and we construct examples of non-trivial transitionally commutative structures on the trivial principal G-bundle over the sphere S-4.
引用
收藏
页码:19617 / 19689
页数:73
相关论文
共 50 条