Network Connectivity via Inference over Curvature-Regularizing Line Graphs

被引:0
|
作者
Collins, Maxwell D. [1 ,2 ]
Singh, Vikas [1 ,2 ]
Alexander, Andrew L. [3 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, 1210 W Dayton St, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biostatist & Med Informat, Madison, WI 53706 USA
[3] Univ Wisconsin, Waisman Lab Brain Imaging, Dept Med Phys & Psychiat, Madison, WI 53706 USA
来源
关键词
DIFFUSION-TENSOR MRI; HUMAN BRAIN; FIBER TRACTOGRAPHY; FIELD MODEL; TRACKING; IMAGES; FRAMEWORK; PATHWAYS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion Tensor Imaging (DTI) provides estimates of local directional information regarding paths of white matter tracts in the human brain. An important problem in DTI is to infer tract connectivity (and networks) from given image data. We propose a method that infers high-level network structures and connectivity information from Diffusion Tensor images. Our algorithm extends principles from perceptual contours to construct a weighted line-graph based on how well the tensors agree with a set of proposal curves (regularized by length and curvature). The problem of extracting high-level anatomical connectivity is then posed as an optimization problem over this curvature-regularizing graph - which gives subgraphs which comprise a representation of the tracts' network topology. We present experimental results and an open-source implementation of the algorithm.
引用
收藏
页码:65 / +
页数:3
相关论文
共 10 条
  • [1] Random line graphs and edge-attributed network inference
    Lubberts, Zachary
    Athreya, Avanti
    Park, Youngser
    Priebe, Carey e.
    BERNOULLI, 2025, 31 (02) : 1633 - 1663
  • [2] Deep Network Regularization via Bayesian Inference of Synaptic Connectivity
    Partaourides, Harris
    Chatzis, Sotirios P.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2017, PT I, 2017, 10234 : 30 - 41
  • [3] Inference of Spatiotemporal Processes over Graphs via Kernel Kriged Kalman Filtering
    Ioannidis, Vassilis N.
    Romero, Daniel
    Giannakis, Georgios B.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 1679 - 1683
  • [4] Edge importance in a network via line graphs and the matrix exponential
    Cabrera, Omar
    Matar, Mona
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2020, 83 (02) : 807 - 832
  • [5] Edge importance in a network via line graphs and the matrix exponential
    Omar De la Cruz Cabrera
    Mona Matar
    Lothar Reichel
    Numerical Algorithms, 2020, 83 : 807 - 832
  • [6] Inference of Latent Network Features via Co-Intersection Representations of Graphs
    Dau, Son Hoang
    Milenkovic, Olgica
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1351 - 1355
  • [7] Y Recurrent Event Network: Autoregressive Structure Inference over Temporal Knowledge Graphs
    Jin, Woojeong
    Qu, Meng
    Jin, Xisen
    Ren, Xiang
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 6669 - 6683
  • [8] Inference of Spatio-Temporal Functions Over Graphs via Multikernel Kriged Kalman Filtering
    Ioannidis, Vassilis N.
    Romero, Daniel
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (12) : 3228 - 3239
  • [9] KS-GNN: Keywords Search over Incomplete Graphs via Graph Neural Network
    Hao, Yu
    Cao, Xin
    Sheng, Yufan
    Fang, Yixiang
    Wang, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [10] TMS over the pre-SMA enhances semantic cognition via remote network effects on task-based activity and connectivity
    Martin, Sandra
    Frieling, Regine
    Saur, Dorothee
    Hartwigsen, Gesa
    BRAIN STIMULATION, 2023, 16 (05) : 1346 - 1357