Immune Escape Mechanism and Vaccine Research Progress of African Swine Fever Virus

被引:46
|
作者
Wang, Zhaoyang [1 ,2 ,3 ,4 ]
Ai, Qiangyun [1 ,2 ,3 ,4 ]
Huang, Shenglin [1 ,2 ,3 ,4 ]
Ou, Yating [1 ,2 ,3 ,4 ]
Gao, Yinze [1 ,2 ,3 ,4 ]
Tong, Tiezhu [5 ]
Fan, Huiying [1 ,2 ,3 ,4 ]
机构
[1] South China Agr Univ, Coll Vet Med, Guangzhou 510642, Peoples R China
[2] Natl & Reg Joint Engn Lab Medicament Zoonosis Pre, Guangzhou 510642, Peoples R China
[3] Key Lab Anim Vaccine Dev, Minist Agr, Guangzhou 510642, Peoples R China
[4] Key Lab Zoonosis Prevent & Control Guangdong Prov, Guangzhou 510642, Peoples R China
[5] Guangzhou Customs Technol Ctr, Guangzhou 510623, Peoples R China
关键词
African swine fever virus; immune escape; immune response; vaccines; MESSENGER-RNA; NEUTRALIZING ANTIBODIES; ADJUVANTS; PROTEINS; CELLS; PIGS; P54; IMMUNIZATION; ATTACHMENT; CHALLENGE;
D O I
10.3390/vaccines10030344
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
African swine fever virus (ASFV) is the causative agent of the epidemic of African swine fever (ASF), with virulent strains having a mortality rate of up to 100% and presenting devastating impacts on animal farming. Since ASF was first reported in China in 2018, ASFV still exists and poses a potential threat to the current pig industry. Low-virulence and genotype I strains of ASFV have been reported in China, and the prevention and control of ASF is more complicated. Insufficient understanding of the interaction of ASFV with the host immune system hinders vaccine development. Physical barriers, nonspecific immune response and acquired immunity are the three barriers of the host against infection. To escape the innate immune response, ASFV invades monocytes/macrophages and dendritic cells, thereby inhibiting IFN expression, regulating cytokine expression and the body's inflammatory response process. Meanwhile, in order to evade the adaptive immune response, ASFV inhibits antigen presentation, induces the production of non-neutralizing antibodies, and inhibits apoptosis. Recently, significant advances have been achieved in vaccine development around the world. Live attenuated vaccines (LAVs) based on artificially deleting specific virulence genes can achieve 100% homologous protection and partial heterologous protection. The key of subunit vaccines is identifying the combination of antigens that can effectively provide protection and selecting carriers that can effectively deliver the antigens. In this review, we introduce the epidemic trend of ASF and the impact on the pig industry, analyze the interaction mechanism between ASFV and the body's immune system, and compare the current status of potential vaccines in order to provide a reference for the development of effective ASF vaccines.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Research progress on live attenuated vaccine against African swine fever virus
    Liu, Le
    Wang, Xiangwei
    Mao, Ruoqing
    Zhou, Yahua
    Yin, Juanbin
    Sun, Yuefeng
    Yin, Xiangping
    MICROBIAL PATHOGENESIS, 2021, 158
  • [2] ESCAPE OF AFRICAN SWINE FEVER VIRUS FROM THE IMMUNE-SYSTEM
    VINUELA, E
    AIDS RESEARCH AND HUMAN RETROVIRUSES, 1990, 6 (11) : 1355 - 1355
  • [3] Current research progress on the viral immune evasion mechanisms of African swine fever virus
    Changjiang Weng
    Animal Diseases, 2024, 4 (04) : 245 - 262
  • [4] Innate immune escape and adaptive immune evasion of African swine fever virus: A review
    Niu, Sai
    Guo, Yilin
    Wang, Xueying
    Wang, Zixuan
    Sun, Limeng
    Dai, Hanchuan
    Peng, Guiqing
    VIROLOGY, 2023, 587
  • [5] THE VIRUS OF AFRICAN SWINE FEVER - PERSPECTIVES FOR A VACCINE
    VINUELA, E
    VETERINARY MICROBIOLOGY, 1990, 23 (1-4) : 129 - 129
  • [6] Multifaceted Immune Responses to African Swine Fever Virus: Implications for Vaccine Development
    Wang, Tao
    Sun, Yuan
    Huang, Shujian
    Qiu, Hua-Ji
    VETERINARY MICROBIOLOGY, 2020, 249
  • [7] Progress in African Swine Fever Vector Vaccine Development
    Yang, Yue
    Yuan, Hengxing
    Zhang, Yulu
    Luan, Ji
    Wang, Hailong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [8] Current research progress on the viral immune evasion mechanisms of African swine fever
    Weng, Changjiang
    ANIMAL DISEASES, 2024, 4 (01):
  • [9] Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus
    Wei, Qiang
    Liu, Yunchao
    Zhang, Gaiping
    VIRUSES-BASEL, 2021, 13 (03):
  • [10] African swine fever virus: can current research lead to vaccine development?
    Dixon, LK
    Abrams, CC
    Miskin, JE
    Parkhouse, RME
    OUTLOOK ON AGRICULTURE, 1999, 28 (03) : 187 - 194