A new class of energy-preserving numerical integration methods

被引:348
|
作者
Quispel, G. R. W. [1 ,2 ]
McLaren, D. I. [1 ]
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
[2] La Trobe Univ, Ctr Excellence Math & Stat Complex Syst, Bundoora, Vic 3086, Australia
关键词
D O I
10.1088/1751-8113/41/4/045206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The first ever energy-preserving B-series numerical integration method for (ordinary) differential equations is presented and applied to several Hamiltonian systems. Related novel Lie algebraic results are also discussed.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Energy-preserving numerical methods for Landau-Lifshitz equation
    Chen, Yao
    Sun, Yajuan
    Tang, Yifa
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (29)
  • [2] Energy-preserving finite element methods for a class of nonlinear wave equations
    He, Mingyan
    Sun, Pengtao
    APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 446 - 469
  • [3] Energy-preserving methods for Poisson systems
    Brugnano, L.
    Calvo, M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) : 3890 - 3904
  • [4] ENERGY-PRESERVING METHODS ON RIEMANNIAN MANIFOLDS
    Celledoni, Elena
    Eidnes, Solve
    Owren, Brynjulf
    Ringholm, Torbjorn
    MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 699 - 716
  • [5] Spectrally accurate energy-preserving methods for the numerical solution of the "good" Boussinesq equation
    Brugnano, Luigi
    Gurioli, Gianmarco
    Zhang, Chengjian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1343 - 1362
  • [6] ENERGY-PRESERVING RUNGE-KUTTA METHODS
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. Reinout W.
    Wright, William M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04): : 645 - 649
  • [7] Energy-preserving methods for nonlinear Schrodinger equations
    Besse, Christophe
    Descombes, Stephane
    Dujardin, Guillaume
    Lacroix-Violet, Ingrid
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 618 - 653
  • [8] A novel class of explicit energy-preserving splitting methods for charged-particle dynamics
    Li, Xicui
    Wang, Bin
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [9] Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems
    Brugnano, Luigi
    Iavernaro, Felice
    Trigiante, Donato
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 650 - 667
  • [10] Reprint of Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems
    Brugnano, Luigi
    Iavernaro, Felice
    Trigiante, Donato
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 21 (1-3) : 34 - 51