New means of Cauchy's type

被引:19
|
作者
Anwar, Matloob [1 ]
Pecaric, J. [1 ,2 ]
机构
[1] GC Univ, Abdus Salam Sch Math Sci, Lahore Gulberg 54660, Pakistan
[2] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
关键词
Full Article; Publisher Note;
D O I
10.1155/2008/163202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will introduce new means of Cauchy's type M(r,l)(s) (f, mu) defined, for example, as M(r,l)(s) (f, mu) = ((l(l-s)/r(r-s))(M(r)(r)(f, mu) - M(s)(r)(f, mu)/M(l)(l)(f, mu)-M(s)(l)(f, mu)))(1/(r-l)),in the case when l not equal r not equal s, l, r not equal 0. We will show that this new Cauchy's mean is monotonic, that is, the following result. Theorem. Let t, r, u, v is an element of R, such that t <= v, r <= u. Then forM(r,l)(s) (f, mu), one has M(t,r)(s) <= M(v,u)(s). We will also give some related comparison results. Copyright (C) 2008 M. Anwar.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] New Means of Cauchy's Type
    Matloob Anwar
    J. Pečarić
    Journal of Inequalities and Applications, 2008
  • [2] Means of Cauchy's difference type
    Matkowski, Janusz
    AEQUATIONES MATHEMATICAE, 2025, 99 (01) : 89 - 105
  • [3] CAUCHY MEANS OF MERCER'S TYPE
    Anwar, M.
    Pecaric, J.
    UTILITAS MATHEMATICA, 2011, 84 : 201 - 208
  • [4] Cauchy Means of the Popoviciu Type
    Anwar, Matloob
    Latif, Naveed
    Pecaric, J.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [5] Cauchy Means of the Popoviciu Type
    Matloob Anwar
    Naveed Latif
    J. Pečarić
    Journal of Inequalities and Applications, 2009
  • [6] A NEW GENERAL BOAS-TYPE INEQUALITY AND RELATED CAUCHY-TYPE MEANS
    Cizmesija, A.
    Pecaric, J.
    Pokaz, D.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 599 - 617
  • [7] On weighted extensions of Cauchy's means
    Matkowski, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (01) : 215 - 227
  • [8] Means of Cauchy’s difference typeMeans of Cauchy’s difference typeJ. Matkowski
    Janusz Matkowski
    Aequationes mathematicae, 2025, 99 (1) : 89 - 105
  • [9] Cauchy type means for some generalized convex functions
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [10] CAUCHY-TYPE MEANS FOR POSITIVE LINEAR FUNCTIONALS
    Anwar, M.
    Pecaric, J.
    Lipanovic, M. Rodic
    TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (04): : 511 - 530