Aperiodic spin chain in the mean field approximation

被引:7
|
作者
Berche, PE [1 ]
Berche, B [1 ]
机构
[1] UNIV NANCY 1,CNRS,URA 155,PHYS MAT LAB,F-54506 VANDOEUVRE NANCY,FRANCE
来源
关键词
D O I
10.1088/0305-4470/30/5/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Surface and bulk critical properties of an aperiodic spin chain are investigated in the framework of the phi(4) phenomenological Ginzburg-Landau theory. According to Luck's criterion, the mean field correlation length exponent nu = 1/2 leads to a marginal behaviour when the wandering exponent of the sequence is omega = -1. This is the case of the Fibonacci sequence that we consider here. We calculate the hulk and surface critical exponents for the magnetizations, critical isotherms, susceptibilities and specific heats. These exponents continuously vary with the amplitude of the perturbation. Hyperscaling relations are used in order to obtain an estimate of the upper critical dimension for this system.
引用
收藏
页码:1347 / 1362
页数:16
相关论文
共 50 条
  • [1] Spin crossover in an elastic chain of exchange clusters beyond mean field approximation
    Morozov, Vitaly
    Lukzen, Nikita
    Ovcharenko, Victor
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (41) : 13667 - 13673
  • [2] Nonuniversal behavior for aperiodic interactions within a mean-field approximation
    Faria, Maicon S.
    Branco, N. S.
    Tragtenberg, M. H. R.
    PHYSICAL REVIEW E, 2008, 77 (04):
  • [3] Beyond the mean field approximation for spin glasses
    Serva, M
    Paladin, G
    PHYSICAL REVIEW E, 1996, 54 (05) : 4637 - 4643
  • [4] Quantum spin chain dissipative mean-field dynamics
    Benatti, F.
    Carollo, F.
    Floreanini, R.
    Narnhofer, H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (32)
  • [5] Mean field theory on the incommensurate ground state of the zigzag spin chain
    Sun, LQ
    Dai, JH
    Qin, SJ
    Zhang, J
    PHYSICS LETTERS A, 2002, 294 (3-4) : 239 - 244
  • [6] Ferrimagnetism in the mean-field approximation of a mixed spin Ising nanowire system
    Mohamad, Hadey K.
    Yasser, Hassan Abid
    Nabeel, Omer M.
    SOLID STATE COMMUNICATIONS, 2020, 308
  • [7] MEAN-RANDOM-FIELD APPROXIMATION FOR A BOND-RANDOM SPIN SYSTEM
    SCHOWALTER, LJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 204 - 204
  • [8] THE XYZ MODEL IN THE MEAN-FIELD APPROXIMATION IN TERMS OF PAULI SPIN MATRICES
    Albayrak, E.
    LITHUANIAN JOURNAL OF PHYSICS, 2024, 64 (01): : 1 - 10
  • [9] The XZ Model in the Mean-Field Approximation with Exponential Pauli Spin Matrices
    Albayrak, Erhan
    SPIN, 2024, 14 (01)
  • [10] GENERALIZED MEAN FIELD APPROXIMATION
    VIGFUSSON, JO
    HELVETICA PHYSICA ACTA, 1987, 60 (5-6): : 869 - 869