(n,t)-quasi-projective and equivalences

被引:1
|
作者
Wei, J [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
关键词
Equivalence; (n; t)-quasi-projective; *(n)-module; 2-quasi-progenerator;
D O I
10.1080/00927870500288085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of (n,t)-quasi projective and show that they are intimately relative to equivalences of module categories. As applications, we give a classification of *(n)-modules and generalize Fuller's quasi-progenerators naturally.
引用
收藏
页码:4303 / 4320
页数:18
相关论文
共 50 条
  • [1] QUASI-PROJECTIVE DIMENSION
    Gheibi, Mohsen
    Jorgensen, David A.
    Takahashi, Ryo
    PACIFIC JOURNAL OF MATHEMATICS, 2021, 312 (01) : 113 - 147
  • [2] SUBMODULES OF QUASI-PROJECTIVE MODULES
    AHSAN, J
    COMMUNICATIONS IN ALGEBRA, 1981, 9 (09) : 975 - 988
  • [3] Quasi-projective Brauer characters
    Liu, Yanjun
    Willems, Wolfgang
    JOURNAL OF ALGEBRA, 2018, 499 : 506 - 515
  • [4] COMPLETELY QUASI-PROJECTIVE MONOIDS
    AHSAN, J
    SAIFULLAH, K
    SEMIGROUP FORUM, 1989, 38 (01) : 123 - 126
  • [5] QUASI-PROJECTIVE ABELIAN GROUPS
    FUCHS, L
    RANGASWA.KM
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1970, 98 (01): : 5 - &
  • [6] QUASI-PROJECTIVE AND QUASI-INJECTIVE MODULES
    KOEHLER, A
    PACIFIC JOURNAL OF MATHEMATICS, 1971, 36 (03) : 713 - &
  • [7] QUASI-PROJECTIVE AND QUASI-INJECTIVE MODULES
    KOEHLER, AB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 793 - &
  • [8] Quasi-projective and quasi-liftable characters
    Willems, W.
    Zalesski, A. E.
    JOURNAL OF ALGEBRA, 2015, 442 : 548 - 559
  • [9] Some Generalizations of Quasi-Projective Modules
    Kalebogaz, Berke
    Keskin-Tutuncu, Derya
    Smith, Patrick F.
    ALGEBRA COLLOQUIUM, 2015, 22 : 727 - 738
  • [10] RINGS WITH QUASI-PROJECTIVE LEFT IDEALS
    JAIN, SK
    SINGH, S
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (01) : 169 - 181