Programmable Montgomery modular multiplier for trinomial reduction polynomials in GF(2m)

被引:0
|
作者
Satzoda, Ravi Kumar [1 ]
Quang, Huy Nguyen [1 ]
Chang, Chip-Hong [1 ]
机构
[1] Nanyang Technol Univ, Ctr High Performance Embedded Syst, Singapore, Singapore
关键词
D O I
10.1109/ISICIR.2007.4441838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With cryptosystems pervading most information security systems, cryptoprocessors that are adaptable to changing security requirements are needed. Montgomery modular multiplication in GF(2(m)) is commonly used in elliptic curve cryptography to implement encryption and decryption engines. This paper introduces a programmable Montgomery multiplier for a class of finite fields that have a trinomial reduction polynomial. A novel architecture is proposed that can be programmed to operate in any extended binary field, GF(2(m)), of order m such that m <= M where M is the maximum field order supported by the multiplier. The proposed architecture is further extended to the design of Montgomery squarer. The area-delay trade offs that accompany the programmability of architectures are discussed.
引用
收藏
页码:224 / 227
页数:4
相关论文
共 50 条
  • [1] Montgomery multiplier and squarer in GF(2m)
    Wu, HP
    [J]. CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS-CHES 2000, PROCEEDINGS, 2001, 1965 : 264 - 276
  • [2] A Hardware Pipelined Architecture of a Scalable Montgomery Modular Multiplier over GF(2m)
    Reymond, Guillaume
    Murillo, Victor
    [J]. 2013 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2013,
  • [3] An FPGA implementation of a Montgomery multiplier over GF(2M)
    Mentens, N
    Örs, SB
    Preneel, B
    Vandewalle, J
    [J]. COMPUTING AND INFORMATICS, 2004, 23 (5-6) : 487 - 499
  • [4] Scalable montgomery multiplier for finite fields GF(p) and GF(2m)
    Kim, Tae Ho
    Kim, Sang Chul
    Kim, Chang Hoon
    Hong, Chun Pyo
    [J]. DELTA 2008: FOURTH IEEE INTERNATIONAL SYMPOSIUM ON ELECTRONIC DESIGN, TEST AND APPLICATIONS, PROCEEDINGS, 2008, : 458 - +
  • [5] Karatsuba-Ofman Multiplier with Integrated Modular Reduction for GF(2m)
    Cuevas-Farfan, Eduardo
    Morales-Sandoval, Miguel
    Morales-Reyes, Alicia
    Feregrino-Uribe, Claudia
    Algredo-Badillo, Ignacio
    Kitsos, Paris
    Cumplido, Rene
    [J]. ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2013, 13 (02) : 3 - 10
  • [6] Efficient Scalable Serial Multiplier Over GF(2m) Based on Trinomial
    Gebali, Fayez
    Ibrahim, Atef
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2015, 23 (10) : 2322 - 2326
  • [7] A semi-systolic Montgomery multiplier over GF(2m)
    Kim, Kee-Won
    Jeon, Jun-Cheol
    [J]. IEICE ELECTRONICS EXPRESS, 2015, 12 (21):
  • [8] Scalable and systolic Montgomery multiplier over GF(2m) generated by trinomials
    Lee, C. -Y.
    Chiou, C. W.
    Lin, J. -M.
    Chang, C. -C.
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2007, 1 (06) : 477 - 484
  • [9] Fast modular reduction and squaring in GF(2m)
    Boppre Niehues, L.
    Custodio, R.
    Panario, D.
    [J]. INFORMATION PROCESSING LETTERS, 2018, 132 : 33 - 38
  • [10] Semi-systolic modular multiplier over GF(2m)
    Kim, Hyun-Sung
    Lee, Sung-Woon
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2008, PT 2, PROCEEDINGS, 2008, 5073 : 836 - +