Cointegration testing and dynamic simulations of autoregressive distributed lag models

被引:313
|
作者
Jordan, Soren [1 ]
Philips, Andrew Q. [2 ]
机构
[1] Auburn Univ, Dept Polit Sci, Auburn, AL 36849 USA
[2] Univ Colorado, Dept Polit Sci, Boulder, CO 80309 USA
来源
STATA JOURNAL | 2018年 / 18卷 / 04期
关键词
st0545; dynamac; pssbounds; dynardl; cointegration; dynamic modeling; autoregressive distributed lag; error correction; ERROR-CORRECTION;
D O I
10.1177/1536867X1801800409
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we introduce dynamac, a suite of commands designed to assist users in modeling and visualizing the effects of autoregressive distributed lag models and in testing for cointegration. We discuss the bounds cointegration test proposed by Pesaran, Shin, and Smith (2001, Journal of Applied Econometrics 16: 289-326), which we have adapted into a command. Because the resulting models can be dynamically complex, we follow the advice of Philips (2018, American Journal of Political Science 62: 230-244) by introducing a flexible command designed to dynamically simulate and plot a variety of types of autoregressive distributed lag models, including error-correction models.
引用
收藏
页码:902 / 923
页数:22
相关论文
共 50 条
  • [1] Autoregressive distributed lag models and cointegration
    Hassler U.
    Wolters J.
    [J]. Allgemeines Statistisches Archiv, 2006, 90 (1): : 59 - 74
  • [2] Bootstrapping the autoregressive distributed lag test for cointegration
    McNown, Robert
    Sam, Chung Yan
    Goh, Soo Khoon
    [J]. APPLIED ECONOMICS, 2018, 50 (13) : 1509 - 1521
  • [3] Have Your Cake and Eat It Too? Cointegration and Dynamic Inference from Autoregressive Distributed Lag Models
    Philips, Andrew Q.
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 2018, 62 (01) : 230 - 244
  • [4] An augmented autoregressive distributed lag bounds test for cointegration
    Sam, Chung Yan
    McNown, Robert
    Goh, Soo Khoon
    [J]. ECONOMIC MODELLING, 2019, 80 : 130 - 141
  • [5] Dynamic Simulation and Testing for Single-Equation Cointegrating and Stationary Autoregressive Distributed Lag Models
    Jordan, Soren
    Philips, Andrew Q.
    [J]. R JOURNAL, 2018, 10 (02): : 469 - 488
  • [6] Quantile cointegration in the autoregressive distributed-lag modeling framework
    Cho, Jin Seo
    Kim, Tae-hwan
    Shin, Yongcheol
    [J]. JOURNAL OF ECONOMETRICS, 2015, 188 (01) : 281 - 300
  • [7] Predicting the influence of climate on grassland area burned in Xilingol, China with dynamic simulations of autoregressive distributed lag models
    Shabbir, Ali Hassan
    Zhang, Jiquan
    Johnston, James D.
    Sarkodie, Samuel Asumadu
    Lutz, James A.
    Liu, Xingpeng
    [J]. PLOS ONE, 2020, 15 (04):
  • [8] Stock market reaction to macroeconomic variables: An assessment with dynamic autoregressive distributed lag simulations
    Khan, Muhammad Kamran
    Teng, Jian-Zhou
    Khan, Muhammad Imran
    Khan, Muhammad Fayaz
    [J]. INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2023, 28 (03) : 2436 - 2448
  • [9] Determinants of gross domestic savings in Uganda: an autoregressive distributed lag (ARDL) approach to cointegration
    Nagawa V.
    Wasswa F.
    Bbaale E.
    [J]. Journal of Economic Structures, 9 (1)
  • [10] Insurance-growth nexus in Ghana: An autoregressive distributed lag bounds cointegration approach
    Alhassan, Abdul Latif
    Fiador, Vera
    [J]. REVIEW OF DEVELOPMENT FINANCE, 2014, 4 (02) : 83 - 96