Adaptive Lidar Scan Frame Integration: Tracking Known MAVs in 3D Point Clouds

被引:5
|
作者
Li Qingqing [1 ]
Yu Xianjia [1 ]
Queralta, Jorge Pena [1 ]
Westerlund, Tomi [1 ]
机构
[1] Univ Turku, Turku Intelligent Embedded & Robot Syst TIERS Lab, Turku, Finland
基金
芬兰科学院;
关键词
Micro-aerial vehicles; MAV; UAV; UGV; detection; tracking; lidar detection; lidar tracking; adaptive scanning; LOCALIZATION; SYSTEM;
D O I
10.1109/ICAR53236.2021.9659483
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Micro-aerial vehicles (MAVs) are becoming ubiquitous across multiple industries and application domains. Lightweight MAVs with only an onboard flight controller and a minimal sensor suite (e.g., IMU, vision, and vertical ranging sensors) have potential as mobile and easily deployable sensing platforms. When deployed from a ground robot, a key parameter is a relative localization between the ground robot and the MAV. This paper proposes a novel method for tracking MAVs in lidar point clouds. In lidar point clouds, we consider the speed and distance of the MAV to actively adapt the lidar's frame integration time and, in essence, the density and size of the point cloud to be processed. We show that this method enables more persistent and robust tracking when the speed of the MAV or its distance to the tracking sensor changes. In addition, we propose a multi-modal tracking method that relies on high-frequency scans for accurate state estimation, lower-frequency scans for robust and persistent tracking, and sub-Hz processing for trajectory and object identification. These three integration and processing modalities allow for an overall accurate and robust MAV tracking while ensuring the object being tracked meets shape and size constraints.
引用
收藏
页码:1079 / 1086
页数:8
相关论文
共 50 条
  • [1] Learning the Incremental Warp for 3D Vehicle Tracking in LiDAR Point Clouds
    Tian, Shengjing
    Liu, Xiuping
    Liu, Meng
    Bian, Yuhao
    Gao, Junbin
    Yin, Baocai
    REMOTE SENSING, 2021, 13 (14)
  • [2] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [3] Integration of 3D Point Clouds
    不详
    BAUINGENIEUR, 2017, 92 : A13 - A13
  • [4] DAPS3D: Domain Adaptive Projective Segmentation of 3D LiDAR Point Clouds
    Klokov, Alexey A.
    Pak, Di Un
    Khorin, Aleksandr
    Yudin, Dmitry A.
    Kochiev, Leon
    Luchinskiy, Vladimir D.
    Bezuglyj, Vitaly D.
    IEEE ACCESS, 2023, 11 : 79341 - 79356
  • [5] Point Clouds: Lidar versus 3D Vision
    Leberl, F.
    Irschara, A.
    Pock, T.
    Meixner, P.
    Gruber, M.
    Scholz, S.
    Wiechert, A.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2010, 76 (10): : 1123 - 1134
  • [6] 3D BUILDING RECONSTRUCTION FROM LIDAR POINT CLOUDS BY ADAPTIVE DUAL CONTOURING
    Orthuber, E.
    Avbelj, J.
    PIA15+HRIGI15 - JOINT ISPRS CONFERENCE, VOL. II, 2015, 2-3 (W4): : 157 - 164
  • [7] Biomass Prediction with 3D Point Clouds from LiDAR
    Pan, Liyuan
    Liu, Liu
    Condon, Anthony G.
    Estavillo, Gonzalo M.
    Coe, Robert A.
    Bull, Geoff
    Stone, Eric A.
    Petersson, Lars
    Rolland, Vivien
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1716 - 1726
  • [8] UNSUPERVISED STREAM LEARNING FOR 3D LIDAR POINT CLOUDS
    Shreelakshmi, C. R.
    Durbha, Surya S.
    Shinde, Rajat C.
    Talreja, Pratyush V.
    Singh, Gaganpreet
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4451 - 4454
  • [9] Tracking 3D LIDAR Point Clouds Using Extended Kalman Filters in KITTI Driving Sequences
    Maalej, Yassine
    Sorour, Sameh
    Abdel-Rahim, Ahmed
    Guizani, Mohsen
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [10] A dynamic and adaptive class-balanced data augmentation approach for 3D LiDAR point clouds
    Liu, Bo
    Qi, Xiao
    PLOS ONE, 2025, 20 (03):