Exploiting salient semantic analysis for information retrieval

被引:12
|
作者
Luo, Jing [1 ,2 ,3 ]
Meng, Bo [3 ]
Quan, Changqin [4 ]
Tu, Xinhui [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Comp Sci & Technol, Wuhan 430065, Peoples R China
[2] Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430065, Peoples R China
[3] Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China
[4] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
基金
中国国家自然科学基金;
关键词
Information retrieval; language model; salient semantic analysis; Wikipedia; document model; WIKIPEDIA;
D O I
10.1080/17517575.2015.1080301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.
引用
收藏
页码:959 / 969
页数:11
相关论文
共 50 条
  • [1] Exploiting Semantic Coherence Features for Information Retrieval
    Tu, Xinhui
    Huang, Jimmy Xiangji
    Luo, Jing
    He, Tingting
    [J]. SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2016, : 837 - 840
  • [2] Exploiting Semantic Annotations in Math Information Retrieval
    Sojka, Petr
    [J]. PROCEEDINGS OF THE FIFTH WORKSHOP ON EXPLOITING SEMANTIC ANNOTATIONS IN INFORMATION RETRIEVAL, 2012, : 15 - 16
  • [3] Exploiting Wikipedia in integrating semantic annotation with information retrieval
    Fernandez-Garcia, Norberto
    Blazquez-del-Toro, Jose M.
    Sanchez-Fernandez, Luis
    Luque, Vicente
    [J]. ADVANCES IN WEB INTELLIGENCE AND DATA MINING, 2006, 23 : 61 - +
  • [4] Salient context-based semantic matching for information retrieval
    Qi, Yuanyuan
    Zhang, Jiayue
    Xu, Weiran
    Guo, Jun
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
  • [5] Salient context-based semantic matching for information retrieval
    Yuanyuan Qi
    Jiayue Zhang
    Weiran Xu
    Jun Guo
    [J]. EURASIP Journal on Advances in Signal Processing, 2020
  • [6] Exploiting semantic linkages among multiple sources for semantic information retrieval
    Li, JianQiang
    Yang, Ji-Jiang
    Liu, Chunchen
    Zhao, Yu
    Liu, Bo
    Shi, Yuliang
    [J]. ENTERPRISE INFORMATION SYSTEMS, 2014, 8 (04) : 464 - 489
  • [7] Exploiting syntactic analysis of queries for information retrieval
    Mittendorfer, M
    Winiwarter, W
    [J]. DATA & KNOWLEDGE ENGINEERING, 2002, 42 (03) : 315 - 325
  • [8] Exploiting Semantic Tags in XML Retrieval
    Wang, Qiuyue
    Li, Qiushi
    Wang, Shan
    Du, Xiaoyong
    [J]. FOCUSED RETRIEVAL AND EVALUATION, 2010, 6203 : 133 - +
  • [9] Semantic Information Retrieval
    Risø National Labotatory, Roskilde, Denmark
    [J]. Commun ACM, 4 (XXXX-XXXXI):
  • [10] Semantic information retrieval
    Pejtersen, AM
    [J]. COMMUNICATIONS OF THE ACM, 1998, 41 (04) : 90 - 92