ZERO SETS FOR SPACES OF ANALYTIC FUNCTIONS

被引:5
|
作者
Lyons, Russell [1 ]
Zhai, Alex [2 ]
机构
[1] Indiana Univ, Dept Math, 831 E 3rd St, Bloomington, IN 47405 USA
[2] Stanford Univ, Dept Math, 450 Serra Mall,Bldg 380, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Bergman; Bargmann; Fock; Gaussian; random; POWER-SERIES; BERGMAN;
D O I
10.5802/aif.3210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that under mild conditions, a Gaussian analytic function F that a.s. does not belong to a given weighted Bergman space or Bargmann- Fock space has the property that a.s. no non-zero function in that space vanishes where F does. This establishes a conjecture of Shapiro [21] on Bergman spaces and allows us to resolve a question of Zhu [24] on Bargmann-Fock spaces. We also give a similar result on the union of two (or more) such zero sets, thereby establishing another conjecture of Shapiro [21] on Bergman spaces and allowing us to strengthen a result of Zhu [24] on Bargmann-Fock spaces.
引用
收藏
页码:2311 / 2328
页数:18
相关论文
共 50 条