Distributed Lag Linear and Non-Linear Models in R: The Package dlnm

被引:1024
|
作者
Gasparrini, Antonio [1 ]
机构
[1] London Sch Hyg & Trop Med, Dept Social & Environm Hlth Res, London WC1H 9SH, England
来源
JOURNAL OF STATISTICAL SOFTWARE | 2011年 / 43卷 / 08期
基金
英国医学研究理事会;
关键词
distributed lag models; time series; smoothing; delayed effects; R; AIR-POLLUTION; TIME-SERIES; MORTALITY DISPLACEMENT; AMBIENT-TEMPERATURE; HEALTH; DEATHS; CITIES; LONDON;
D O I
10.18637/jss.v043.i08
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Distributed lag non-linear models (DLNMs) represent a modeling framework to flexibly describe associations showing potentially non-linear and delayed effects in time series data. This methodology rests on the definition of a crossbasis, a bi-dimensional functional space expressed by the combination of two sets of basis functions, which specify the relationships in the dimensions of predictor and lags, respectively. This framework is implemented in the R package dlnm, which provides functions to perform the broad range of models within the DLNM family and then to help interpret the results, with an emphasis on graphical representation. This paper offers an overview of the capabilities of the package, describing the conceptual and practical steps to specify and interpret DLNMs with an example of application to real data.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Distributed lag non-linear models
    Gasparrini, A.
    Armstrong, B.
    Kenward, M. G.
    STATISTICS IN MEDICINE, 2010, 29 (21) : 2224 - 2234
  • [2] Extensions of the distributed lag non-linear model (DLNM) to account for cumulative mortality
    Guo, Chao-Yu
    Huang, Xing-Yi
    Kuo, Pei-Cheng
    Chen, Yi-Hau
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (29) : 38679 - 38688
  • [3] Extensions of the distributed lag non-linear model (DLNM) to account for cumulative mortality
    Chao-Yu Guo
    Xing-Yi Huang
    Pei-Cheng Kuo
    Yi-Hau Chen
    Environmental Science and Pollution Research, 2021, 28 : 38679 - 38688
  • [4] Applying the Distributed Lag Non-Linear Model (DLNM) in Epidemiology: Temperature and Mortality in Mashhad
    Entezari, Alireza
    Mayvaneh, Fatemeh
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2019, 48 (11) : 2108 - 2111
  • [5] A Penalized Framework for Distributed Lag Non-Linear Models
    Gasparrini, Antonio
    Scheipl, Fabian
    Armstrong, Ben
    Kenward, Michael G.
    BIOMETRICS, 2017, 73 (03) : 938 - 948
  • [6] Spatial Bayesian distributed lag non-linear models (SB-DLNM) for small-area exposure-lag-response epidemiological modelling
    Quijal-Zamorano, Marcos
    Martinez-Beneito, Miguel A.
    Ballester, Joan
    Mari-Dell'Olmo, Marc
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2024, 53 (03)
  • [7] Modeling exposure-lag-response associations with distributed lag non-linear models
    Gasparrini, Antonio
    STATISTICS IN MEDICINE, 2014, 33 (05) : 881 - 899
  • [8] nCal: an R package for non-linear calibration
    Fong, Youyi
    Sebestyen, Krisztian
    Yu, Xuesong
    Gilbert, Peter
    Self, Steve
    BIOINFORMATICS, 2013, 29 (20) : 2653 - 2654
  • [9] Reducing and meta-analysing estimates from distributed lag non-linear models
    Gasparrini, Antonio
    Armstrong, Ben
    BMC MEDICAL RESEARCH METHODOLOGY, 2013, 13
  • [10] Reducing and meta-analysing estimates from distributed lag non-linear models
    Antonio Gasparrini
    Ben Armstrong
    BMC Medical Research Methodology, 13