An interior-point approach for solving MC2 linear programming problems

被引:2
|
作者
Zhong, YH
Shi, Y
机构
[1] Coll Informat Sci & Technol, Omaha, NE 68182 USA
[2] SW Petr Inst, Dept Comp Sci, Nanchong 637001, Sichuan, Peoples R China
关键词
interior-point method; MC2 linear programming; efficient solution; potential solution;
D O I
10.1016/S0895-7177(01)00072-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an interior-point method to solve the multiple criteria and multiple constraint level linear programming ((MCLP)-L-2) problems. This approach utilizes the known interior-point method to multiple criteria linear programming (MCLP) and a convex combination method to generate potential solutions for the (MCLP)-L-2 problems. This method can be used as an alternative to the well-known MC2-simplex method. The numerical comparison study of two methods is provided in the paper. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:411 / 422
页数:12
相关论文
共 50 条
  • [1] An MC2 linear programming approach to combined forecasting
    Zhou, ZF
    Shi, Y
    Ho, X
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (08) : 97 - 103
  • [2] SOLVING SYMMETRICAL INDEFINITE SYSTEMS IN AN INTERIOR-POINT METHOD FOR LINEAR-PROGRAMMING
    FOURER, R
    MEHROTRA, S
    MATHEMATICAL PROGRAMMING, 1993, 62 (01) : 15 - 39
  • [3] Solving linear systems in interior-point methods
    Seol, T
    Park, S
    COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (04) : 317 - 326
  • [4] Stabilization of Interior-Point Methods for Linear Programming
    Vera V. Kovacevic-Vujcic
    Miroslav D. Asic
    Computational Optimization and Applications, 1999, 14 : 331 - 346
  • [5] PCx: An interior-point code for linear programming
    Czyzyk, J
    Mehrotra, S
    Wagner, M
    Wright, SJ
    OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4): : 397 - 430
  • [6] THE INTERIOR-POINT METHOD FOR LINEAR-PROGRAMMING
    ASTFALK, G
    LUSTIG, I
    MARSTEN, R
    SHANNO, D
    IEEE SOFTWARE, 1992, 9 (04) : 61 - 68
  • [7] Stabilization of interior-point methods for linear programming
    Kovacevic-Vujcic, VV
    Asic, MD
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 14 (03) : 331 - 346
  • [8] A robust and efficient proposal for solving linear systems arising in interior-point methods for linear programming
    María D. Gonzalez-Lima
    Aurelio R. L. Oliveira
    Danilo E. Oliveira
    Computational Optimization and Applications, 2013, 56 : 573 - 597
  • [9] A robust and efficient proposal for solving linear systems arising in interior-point methods for linear programming
    Gonzalez-Lima, Maria D.
    Oliveira, Aurelio R. L.
    Oliveira, Danilo E.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (03) : 573 - 597
  • [10] Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming
    Benson, HY
    Vanderbei, RJ
    MATHEMATICAL PROGRAMMING, 2003, 95 (02) : 279 - 302