3D modeling of electric fields in the LUX detector

被引:19
|
作者
Akerib, D. S. [1 ,2 ,3 ]
Alsum, S. [4 ]
Araujo, H. M. [5 ]
Bai, X. [5 ,6 ]
Bailey, A. J. [5 ]
Balajthy, J. [7 ]
Beltrame, P. [8 ]
Bernard, E. P. [9 ,10 ]
Bernstein, A. [11 ]
Biesiadzinski, T. P. [1 ,2 ,3 ]
Boulton, E. M. [9 ,10 ]
Bras, P. [12 ,20 ]
Byram, D. [13 ,14 ]
Cahn, S. B. [10 ]
Carmona-Benitez, M. C. [15 ,16 ]
Chan, C. [17 ]
Currie, A. [5 ]
Cutter, J. E. [18 ]
Davison, T. J. R. [8 ]
Dobi, A. [19 ]
Druszkiewicz, E.
Edwards, B. N. [10 ]
Fallon, S. R. [21 ]
Fan, A. [2 ,3 ]
Fiorucci, S. [17 ,19 ]
Gaitskell, R. J. [17 ]
Genovesi, J. [21 ]
Ghag, C. [22 ]
Gilchriese, M. G. D. [19 ]
Hall, C. R. [7 ]
Hanhardt, M. [5 ,6 ,14 ]
Haselschwardt, S. J. [16 ]
Hertel, S. A. [10 ,19 ,23 ,24 ]
Hogan, D. P. [9 ]
Horn, M. [9 ,10 ,14 ]
Huang, D. Q. [17 ]
Ignarra, C. M. [2 ,3 ]
Jacobsen, R. G. [9 ]
Ji, W. [1 ,2 ,3 ]
Kamdin, K. [9 ]
Kazkaz, K. [11 ]
Khaitan, D. [20 ]
Knoche, R. [7 ]
Larsen, N. A. [10 ]
Lenardo, B. G. [11 ,18 ]
Lesko, K. T. [19 ]
Lindote, A. [12 ]
Lopes, M. I. [12 ]
Manalaysay, A.
Mannino, R. L. [4 ,25 ]
机构
[1] Case Western Reserve Univ, Dept Phys, 10900 Euclid Ave, Cleveland, OH 44106 USA
[2] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94205 USA
[3] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94309 USA
[4] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[5] Imperial Coll London, High Energy Phys, Blackett Lab, London SW7 2BZ, England
[6] South Dakota Sch Mines & Technol, 501 East St Joseph St, Rapid City, SD 57701 USA
[7] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[8] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3FD, Midlothian, Scotland
[9] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[10] Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA
[11] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA
[12] Univ Coimbra, Dept Phys, LIP Coimbra, Rua Larga, P-3004516 Coimbra, Portugal
[13] Univ South Dakota, Dept Phys, 414E Clark St, Vermillion, SD 57069 USA
[14] South Dakota Sci & Technol Author, Sanford Underground Res Facil, Lead, SD 57754 USA
[15] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[16] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[17] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA
[18] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA
[19] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[20] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[21] SUNY Albany, Dept Phys, 1400 Washington Ave, Albany, NY 12222 USA
[22] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[23] Univ Massachusetts, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA
[24] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[25] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[26] Calif State Univ Stanislaus, Dept Phys, 1 Univ Circle, Turlock, CA 95382 USA
来源
JOURNAL OF INSTRUMENTATION | 2017年 / 12卷
基金
美国国家科学基金会;
关键词
Analysis and statistical methods; Detector modelling and simulations II (electric fields; charge transport; multiplication and induction; pulse formation; electron emission; etc); Noble liquid detectors (scintillation; ionization; double-phase); Dark Matter detectors (WIMPs; axions; etc.); CALORIMETER; CHAMBERS;
D O I
10.1088/1748-0221/12/11/P11022
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniformnegative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. Thiswas done by fitting a model built inCOMSOLMultiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to 5 : 5 mu C/m(2). From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of similar to 200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] CALCULATION OF THE POTENTIALS AND 3D ELECTRIC-FIELDS IN A PROTON DECAY DETECTOR
    LARI, RJ
    DAWSON, JW
    TURNER, LR
    IEEE TRANSACTIONS ON MAGNETICS, 1988, 24 (01) : 559 - 562
  • [2] Finite element modeling of 3D electric fields in electrical prospecting
    Soloveichik, YG
    Royak, ME
    Moiseev, VS
    Vasilev, AV
    FIZIKA ZEMLI, 1997, (09): : 67 - 71
  • [3] Mathability in the Fields of 3D Printing and Modeling
    Zichar, Marianna
    ACTA POLYTECHNICA HUNGARICA, 2022, 19 (01) : 31 - 49
  • [4] 3D Modeling of a Superconducting Transition Edge Detector
    Ansari, Samaneh
    Nazifi, Rana
    Arzefouni, Mehdi Yaghoubi
    Mohajeri, Roya
    Mirzaei, Seyed Iman
    Fardmanesh, Mehdi
    2021 29TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2021, : 56 - 60
  • [5] The Electric Simulation of 3D Pixel Detector with Low Noises
    Guo, Qinwen
    Long, Qiang
    Long, Zhongliang
    Li, Zheng
    PROCEEDINGS OF THE 2ND INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION (IFMEITA 2017), 2017, 130 : 570 - 573
  • [6] Modeling of 3D temperature fields for oblique machining
    Lazoglu, Ismail
    Islam, Coskun
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2012, 61 (01) : 127 - 130
  • [7] Shield Fields: Modeling and Capturing 3D Occluders
    Lanman, Douglas
    Raskar, Ramesh
    Agrawal, Amit
    Taubin, Gabriel
    ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (05):
  • [8] Numerical Modeling of 3D Printed Electric Machines
    Waterman, Jerry
    Clucas, Alexander
    Costa, Timothy B.
    Zhang, Yue
    Zhang, Julia
    2015 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2015, : 1286 - 1291
  • [9] Efficient corner detector for 3D point crowd data and application to 3D modeling of structures
    Yokoyama, H
    Chikatsu, H
    Videometrics VIII, 2005, 5665 : 208 - 215
  • [10] Electric vehicle routing optimization under 3D electric energy modeling
    Zhu, Yanfei
    Wang, Yonghua
    Li, Chunhui
    Lee, Kwang Y.
    MULTIMEDIA SYSTEMS, 2024, 30 (04)