Printable 3D Trees

被引:6
|
作者
Bo, Z. [1 ]
Lu, L. [1 ]
Sharf, A. [2 ]
Xia, Y. [3 ]
Deussen, O. [4 ]
Chen, B. [1 ]
机构
[1] Shandong Univ, Jinan, Shandong, Peoples R China
[2] Ben Gurion Univ Negev, Beer Sheva, Israel
[3] Dalian Univ Technol, Dalian, Peoples R China
[4] Univ Konstanz, Constance, Germany
关键词
SIMULATION;
D O I
10.1111/cgf.13269
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the growing popularity of 3D printing, different shape classes such as fibers and hair have been shown, driving research toward class-specific solutions. Among them, 3D trees are an important class, consisting of unique structures, characteristics and botanical features. Nevertheless, trees are an especially challenging case for 3D manufacturing. They typically consist of non-volumetric patch leaves, an extreme amount of small detail often below printable resolution and are often physically weak to be self-sustainable. We introduce a novel 3D tree printability method which optimizes trees through a set of geometry modifications for manufacturing purposes. Our key idea is to formulate tree modifications as a minimal constrained set which accounts for the visual appearance of the model and its structural soundness. To handle non-printable fine details, our method modifies the tree shape by gradually abstracting details of visible parts while reducing details of non-visible parts. To guarantee structural soundness and to increase strength and stability, our algorithm incorporates a physical analysis and adjusts the tree topology and geometry accordingly while adhering to allometric rules. Our results show a variety of tree species with different complexity that are physically sound and correctly printed within reasonable time. The printed trees are correct in terms of their allometry and of high visual quality, which makes them suitable for various applications in the realm of outdoor design, modeling and manufacturing.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [1] 3D printable geomaterials
    Hanaor, D. A. H.
    Gan, Y.
    Revay, M.
    Airey, D. W.
    Einav, I.
    GEOTECHNIQUE, 2016, 66 (04): : 323 - 332
  • [2] A 3D printable tissue adhesive
    Wu, Sarah J.
    Wu, Jingjing
    Kaser, Samuel J.
    Roh, Heejung
    Shiferaw, Ruth D.
    Yuk, Hyunwoo
    Zhao, Xuanhe
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [3] PROPERTIES OF 3D PRINTABLE CONCRETE
    Van Zijl, Gideon P. A. G.
    Paul, Suvash Chandra
    Tan, Ming Jen
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 421 - 426
  • [4] 3D Printable Graphene Composite
    Wei, Xiaojun
    Li, Dong
    Jiang, Wei
    Gu, Zheming
    Wang, Xiaojuan
    Zhang, Zengxing
    Sun, Zhengzong
    SCIENTIFIC REPORTS, 2015, 5
  • [5] Porous 3D Printable Hydrogels
    Baur, Eva
    Hirsch, Matteo
    Amstad, Esther
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (09)
  • [6] 3D Printable Graphene Composite
    Xiaojun Wei
    Dong Li
    Wei Jiang
    Zheming Gu
    Xiaojuan Wang
    Zengxing Zhang
    Zhengzong Sun
    Scientific Reports, 5
  • [7] A 3D printable tissue adhesive
    Sarah J. Wu
    Jingjing Wu
    Samuel J. Kaser
    Heejung Roh
    Ruth D. Shiferaw
    Hyunwoo Yuk
    Xuanhe Zhao
    Nature Communications, 15
  • [8] Highly Conductive 3D Printable Materials for 3D Structural Electronics
    Baker, Daina, V
    Bao, Chao
    Kim, Woo Soo
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (06) : 2423 - 2433
  • [9] Review of 3D printable hydrogels and constructs
    Li, Huijun
    Tan, Cavin
    Li, Lin
    MATERIALS & DESIGN, 2018, 159 : 20 - 38
  • [10] Rheological characterization of 3D printable geopolymers
    Ranjbar, Navid
    Mehrali, Mehdi
    Kuenzel, Carsten
    Gundlach, Carsten
    Pedersen, David Bue
    Dolatshahi-Pirouz, Alireza
    Spangenberg, Jon
    CEMENT AND CONCRETE RESEARCH, 2021, 147