Sugar beet cellulose nanofibril-reinforced composites

被引:162
|
作者
Leitner, Johannes
Hinterstoisser, Barbara
Wastyn, Marnik
Keckes, Jozef
Gindl, Wolfgang [1 ]
机构
[1] Univ Nat Resources & Appl Life Sci, Dept Mat Sci & Proc & Appl Life Sci, Vienna, Austria
[2] Zuckerforsch Tulln GmbH, Tulln, Austria
[3] Univ Leoben, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria
关键词
cellulose composites; mechanical properties; nanofibrils; sugar beet cellulose;
D O I
10.1007/s10570-007-9131-2
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Cellulose was isolated from sugar beet chips, a by-product of sugar production, by wet chemistry. Further processing of the cellulose with a high-pressure homogeniser led to the disruption of cell walls into nanofibrils. Cellulose sheets obtained by casting and slow evaporation of water showed higher strength and stiffness when homogenised cellulose was used compared to unhomogenised cellulose. These cellulose sheets showed significantly better mechanical performance than Kraft paper tested for reference. The addition of cellulose nanofibrils to a polyvinyl alcohol and a phenol-formaldehyde matrix, respectively, demonstrated excellent reinforcement properties. The best mechanical performance was achieved for a composite with a phenol-formaldehyde resin content of 10%, which showed a tensile strength of 127 MPa, a modulus of elasticity of 9.5 GPa, and an elongation at break of 2.9%.
引用
收藏
页码:419 / 425
页数:7
相关论文
共 50 条
  • [1] Sugar beet cellulose nanofibril-reinforced composites
    Johannes Leitner
    Barbara Hinterstoisser
    Marnik Wastyn
    Jozef Keckes
    Wolfgang Gindl
    Cellulose, 2007, 14 : 419 - 425
  • [2] Cellulose nanofibril-reinforced polypropylene composites for material extrusion: Rheological properties
    Wang, Lu
    Gardner, Douglas J.
    Bousfield, Douglas W.
    POLYMER ENGINEERING AND SCIENCE, 2018, 58 (05): : 793 - 801
  • [3] Cellulose nanofibril-reinforced biodegradable polymer composites obtained via a Pickering emulsion approach
    Yunchong Zhang
    Jun Wu
    Bijia Wang
    Xiaofeng Sui
    Yi Zhong
    Linping Zhang
    Zhiping Mao
    Hong Xu
    Cellulose, 2017, 24 : 3313 - 3322
  • [4] Synthesis and Characterization of Cellulose Nanofibril-Reinforced Polyurethane Foam
    Leng, Weiqi
    Li, Jinghao
    Cai, Zhiyong
    POLYMERS, 2017, 9 (11)
  • [5] Cellulose nanofibril-reinforced biodegradable polymer composites obtained via a Pickering emulsion approach
    Zhang, Yunchong
    Wu, Jun
    Wang, Bijia
    Sui, Xiaofeng
    Zhong, Yi
    Zhang, Linping
    Mao, Zhiping
    Xu, Hong
    CELLULOSE, 2017, 24 (08) : 3313 - 3322
  • [6] Cellulose nanofibril-reinforced composites using aqueous dispersed ethylene-acrylic acid copolymer
    Abhijit Venkatesh
    Johannes Thunberg
    Tobias Moberg
    Maria Klingberg
    Lars Hammar
    Anna Peterson
    Christian Müller
    Antal Boldizar
    Cellulose, 2018, 25 : 4577 - 4589
  • [7] Cellulose nanofibril-reinforced composites using aqueous dispersed ethylene-acrylic acid copolymer
    Venkatesh, Abhijit
    Thunberg, Johannes
    Moberg, Tobias
    Klingberg, Maria
    Hammar, Lars
    Peterson, Anna
    Mueller, Christian
    Boldizar, Antal
    CELLULOSE, 2018, 25 (08) : 4577 - 4589
  • [8] Lignin-Containing Cellulose Nanofibril-Reinforced Polyvinyl Alcohol Hydrogels
    Bian, Huiyang
    Wei, Liqing
    Lin, Chunxiang
    Ma, Qianli
    Dai, Hongqi
    Zhu, J. Y.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (04): : 4821 - 4828
  • [9] In Situ Forming Cellulose Nanofibril-Reinforced Hyaluronic Acid Hydrogel for Cartilage Regeneration
    Zhao, Hongbo
    Zhang, Yajie
    Liu, Yuanshan
    Zheng, Penghui
    Gao, Tong
    Cao, Yi
    Liu, Xingzhu
    Yin, Jingbo
    Pei, Renjun
    Biomacromolecules, 2021, 22 (12): : 5097 - 5107
  • [10] In Situ Forming Cellulose Nanofibril-Reinforced Hyaluronic Acid Hydrogel for Cartilage Regeneration
    Zhao, Hongbo
    Zhang, Yajie
    Liu, Yuanshan
    Zheng, Penghui
    Gao, Tong
    Cao, Yi
    Liu, Xingzhu
    Yin, Jingbo
    Pei, Renjun
    BIOMACROMOLECULES, 2021, 22 (12) : 5097 - 5107