Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation☆

被引:81
|
作者
Van Pham, Viet [1 ,2 ]
Mai, Diem-Quynh [1 ,2 ]
Bui, Dai-Phat [1 ,2 ]
Van Man, Tran [1 ,2 ]
Zhu, Bicheng [3 ]
Zhang, Liuyang [3 ]
Sangkaworn, Jariyaporn [4 ,5 ]
Tantirungrotechai, Jonggol [4 ,5 ]
Reutrakul, Vichai [4 ,5 ]
Cao, Thi Minh [6 ]
机构
[1] Univ Sci, VNU HCM, Fac Mat Sci & Technol, 227 Nguyen Van Cu St,Dist 5, Ho Chi Minh City 700000, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City 700000, Vietnam
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Luoshi Rd 122, Wuhan 430070, Peoples R China
[4] Mahidol Univ, Fac Sci, Dept Chem, Rama VI Rd, Bangkok 10400, Thailand
[5] Mahidol Univ, Fac Sci, Ctr Excellence Innovat Chem, Rama VI Rd, Bangkok 10400, Thailand
[6] Ho Chi Minh City Univ Technol HUTECH, 475A Dien Bien Phu St, Ho Chi Minh City 700000, Vietnam
关键词
S-scheme; Sno(2); G-C3N4; Photocatalysis; NO  removal; GRAPHITIC CARBON NITRIDE; BAND-GAP; SNO2; NANOPARTICLES; OPTICAL-PROPERTIES; REMOVAL; NANOSHEETS; COMPOSITE; PHOTOLUMINESCENCE; PERFORMANCE; FABRICATION;
D O I
10.1016/j.envpol.2021.117510
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Enhancing and investigating the photocatalytic activity over composites for new models remains a challenge. Here, an emerging S-scheme photocatalyst composed of 2D/0D g-C3N4 nanosheets-assisted SnO2 nanoparticles (g-C3N4/SnO2) is successfully synthesized and used for degrading nitrogen oxide (NO), which causes negative impacts on the environment. A wide range of characterization techniques confirms the successful synthesis of SnO2 nanoparticles, g-C3N4 nanosheets, and 2D/0D g-C3N4/SnO2 S-scheme photocatalysts via hydrothermal and annealing processes. Besides, the visible-light response is confirmed by optical analysis. The S-scheme charge transfer was elucidated by Density-Functional Theory (DFT) calculation, trapping experiments, and electron spin resonance (ESR). We found that intrinsic oxygen vacancies of SnO2 nanoparticles and S-scheme charge transfer addressed the limitation of other heterojunction types. It is notable that compared pure SnO2 nanoparticles and g-C3N4, g-C3N4/SnO2 offered the best photocatalytic NO degradation and photostability under visible light with the removal of more than 40% NO at 500 ppb throughout the experiment. Benefiting from the unique structural features, the new generation architectural structure of S-scheme heterojunction exhibited potential photocatalytic activity and it would simultaneously act more promising for environmental treatment in the coming years.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Nanoarchitectonics of S-scheme 0D/2D SbVO4/g-C3N4 photocatalyst for enhanced pollution degradation and H2 generation
    Li, Chenxi
    Zhao, Ying
    Fan, Jun
    Hu, Xiaoyun
    Liu, Enzhou
    Yu, Qiushuo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [2] Nanoarchitectonics of S-scheme 0D/2D SbVO4/g-C3N4 photocatalyst for enhanced pollution degradation and H-2 generation
    Li, Chenxi
    Zhao, Ying
    Fan, Jun
    Hu, Xiaoyun
    Liu, Enzhou
    Yu, Qiushuo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [3] g-C3N4/BiOI S-scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO2 reduction and pollutant degradation
    Li, Hongji
    Wang, Dandan
    Miao, Chun
    Xia, Fengwu
    Wang, Yubo
    Wang, Yutong
    Liu, Chunbo
    Che, Guangbo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (04):
  • [4] 0D/2D Z-scheme heterojunctions of g-C3N4 quantum dots/ZnO nanosheets as a highly efficient visible-light photocatalyst
    Fang, Qian
    Li, Bo
    Li, Yuan-Yuan
    Huang, Wei-Qing
    Peng, Wei
    Fan, Xiaoxing
    Huang, Gui-Fang
    ADVANCED POWDER TECHNOLOGY, 2019, 30 (08) : 1576 - 1583
  • [5] Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction
    Gong, Shuaiqi
    Teng, Xue
    Niu, Yanli
    Liu, Xuan
    Xu, Mingze
    Xu, Chen
    Ji, Lvlv
    Chen, Zuofeng
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 298 (298)
  • [6] 0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis
    Hao, Quanguo
    Mo, Zhao
    Chen, Zhigang
    She, Xiaojie
    Xu, Yuanguo
    Song, Yanhua
    Ji, Haiyan
    Wu, Xiangyang
    Yuan, Shouqi
    Xu, Hui
    Li, Huaming
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 541 : 188 - 194
  • [7] Visible-light-driven g-C3N4/AgBiS2 S-scheme photocatalyst for N2 fixation and rhodamine B degradation
    Mousavi, Mitra
    Bonakdar, Alireza
    Parsaei-Khomami, Anita
    Ghasemi, Jahan B.
    Pourhakkak, Pouran
    Habibi, Mohammad Mehdi
    Jafari, Mohammad
    Jalili, Amir H.
    Li, Xuanhua
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 179
  • [8] Synthesis of S-scheme 0D/2D Co2ZrO5/g-C3N4 heterojunction photocatalyst with enhanced visible-light photocatalytic activity for tetracycline
    Zhu, Zhengru
    Tang, Longjun
    Jiang, Junchao
    Li, Hong
    DIAMOND AND RELATED MATERIALS, 2024, 143
  • [9] S-scheme 2D/2D FeTiO3/g-C3N4 hybrid architectures as visible-light-driven photo-Fenton catalysts for tetracycline hydrochloride degradation
    Xu, Chen-Xiao
    Kong, Yu-Lu
    Zhang, Wen-Jie
    Yang, Mei-Ding
    Wang, Kai
    Chang, Ling
    Chen, Wei
    Huang, Guo-Bo
    Zhang, Jian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 303
  • [10] Construction of highly efficient 0D/2D Bi2MoO6/g-C3N4 heterojunctions for visible-light-driven photodegradation of 1-naphthol
    Lan, Yunlong
    Kong, Qiaoping
    Wang, Dongxue
    Ren, Dongdong
    Fang, Zilong
    Zhang, Weiqi
    Chang, Qi
    Li, Baoyi
    Liu, Jun
    Xiao, Liping
    CERAMICS INTERNATIONAL, 2023, 49 (02) : 2149 - 2156