Weight-Identification Model of Cattle Using Machine-Learning Techniques for Anomaly Detection

被引:3
|
作者
Garcia, Rodrigo [1 ,2 ]
Aguilar, Jose [1 ,3 ,4 ]
Toro, Mauricio [1 ]
Jimenez, Marvin [5 ]
机构
[1] Univ EAFIT, GIDITIC, Medellin, Colombia
[2] Univ Sinu, Fac Engn, Medellin, Colombia
[3] Univ Los Andes, CEMISID, Merida, Venezuela
[4] Univ Alcala, Dept Automat, Madrid, Spain
[5] Univ Sinu, Dept Fac Engn, Monteria, Colombia
关键词
Identification system; Machine learning; Precision Livestock Farming; Anomaly detection; DETECTION SYSTEM; FAULT-DETECTION;
D O I
10.1109/SSCI50451.2021.9659840
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cattle raising is an important economic activity, where livestock entrepreneurs keep track of their production and investment costs, to measure production and business profitability, based on cattle weighing. However, it is complicated for the farmer to detect if the animals they are weighing have gained the right weight. This paper proposes a framework to identify the fattening process, which can be used to detect anomalies in cattle weight-gain over time. This framework used records of animals raised and fattened at "El Rosario" farm, located at the municipality of Monteria (Cordoba-Colombia), to identify the fattening process. The performance of four machine-learning techniques to identify the ideal weight from real data was compared. The algorithms used were Decision Tree (DT), Gradient Boosting (GB), regression based on K-Nearest Neighbors (KNN), and Random Forest (RF). In addition, an outlier-detection process was performed to identify anomalous weights. In general, the results showed that the DT model was the one with the best performance with an average Mean Absolute Error (MAE) of 5.4 kg.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Anomaly Detection using Machine Learning Techniques
    Wankhede, Sonali B.
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [2] Anomaly detection in reconstructed quantum states using a machine-learning technique
    Hara, Satoshi
    Ono, Takafumi
    Okamoto, Ryo
    Washio, Takashi
    Takeuchi, Shigeki
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [3] A meta-learning approach in a cattle weight identification system for anomaly detection
    Garcia, Rodrigo
    Aguilar, Jose
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 217
  • [4] A Survey of BGP Anomaly Detection Using Machine Learning Techniques
    Hammood, Noor Hadi
    Al-Musawi, Bahaa
    Alhilali, Ahmed Hazim
    APPLICATIONS AND TECHNIQUES IN INFORMATION SECURITY (ATIS 2021), 2022, 1554 : 109 - 120
  • [5] Automatic Device Identification and Anomaly Detection with Machine Learning Techniques in Smart Factories
    Tien, Chin-Wei
    Huang, Tse-Yung
    Chen, Ping Chun
    Wang, Jenq-Haur
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3539 - 3544
  • [6] Quantum-state anomaly detection for arbitrary errors using a machine-learning technique
    Hara, Satoshi
    Ono, Takafumi
    Okamoto, Ryo
    Washio, Takashi
    Takeuchi, Shigeki
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [7] DVFS Binning Using Machine-Learning Techniques
    Chang, Keng-Wei
    Huang, Chun-Yang
    Mu, Szu-Pang
    Huang, Jian-Min
    Chen, Shi-Hao
    Chao, Mango C-T
    2018 IEEE INTERNATIONAL TEST CONFERENCE IN ASIA (ITC-ASIA 2018), 2018, : 31 - 36
  • [8] Development of an Anomaly Detection System for Cattle Using Infrared Image and Machine Learning
    Ma, Sai
    Yao, Qinping
    Masuda, Takashi
    Higaki, Shogo
    Yoshioka, Koji
    Arai, Shozo
    Takamatsu, Seiichi
    Itoh, Toshihiro
    SENSORS AND MATERIALS, 2020, 32 (12) : 4139 - 4149
  • [9] Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Ambrogi, F.
    Bergauer, T.
    Brandstetter, J.
    Dragicevic, M.
    Eroe, J.
    Del Valle, A. Escalante
    Flechl, M.
    Fruehwirth, R.
    Jeitler, M.
    Krammer, N.
    Kraetschmer, I
    Liko, D.
    Madlener, T.
    Mikulec, I
    Rad, N.
    Schieck, J.
    Schoefbeck, R.
    Spanring, M.
    Spitzbart, D.
    Waltenberger, W.
    Wulz, C-E
    Zarucki, M.
    Drugakov, V
    Mossolov, V
    Gonzalez, J. Suarez
    Darwish, M. R.
    De Wolf, E. A.
    Di Croce, D.
    Janssen, X.
    Lelek, A.
    Pieters, M.
    Sfar, H. Rejeb
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Putte, S.
    Van Remortel, N.
    Blekman, F.
    Bols, E. S.
    Chhibra, S. S.
    D'Hondt, J.
    De Clercq, J.
    Lontkovskyi, D.
    Lowette, S.
    Marchesini, I
    Moortgat, S.
    Python, Q.
    Skovpen, K.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [10] Anomaly Detection in Seismic Data-Metadata Using Simple Machine-Learning Models
    Zaccarelli, Riccardo
    Bindi, Dino
    Strollo, Angelo
    SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (04) : 2627 - 2639