A study of a kind of hyper chaotic cryptosystern security

被引:7
|
作者
Xie, K [1 ]
Lei, M
Feng, ZJ
机构
[1] Shanghai Jiao Tong Univ, Inst Mechatron Control, Shanghai 200030, Peoples R China
[2] Singapore Nanyang Technol Univ, Singapore, Singapore
关键词
chaotic encryption; time series analysis; VWK nonlinear test; surrogate data;
D O I
10.7498/aps.54.1267
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note, we apply the sub-sampling idea to the design of the chaotic secure communication system and analyze the Lorenz system and a kind of hyper chaotic system. The result obtained indicates that the security of the cryptosystem is not only determined by the dimension, but also related with the sampling interval. Then, we verify these two systems using the VWK (Volterra-Wiener-Korengerg) nonlinear test and surrogate data test methods.
引用
下载
收藏
页码:1267 / 1272
页数:6
相关论文
共 12 条
  • [1] THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS
    ABARBANEL, HDI
    BROWN, R
    SIDOROWICH, JJ
    TSIMRING, LS
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (04) : 1331 - 1392
  • [2] Detection of nonlinear dynamics in short, noisy time series
    Barahona, M
    Poon, CS
    [J]. NATURE, 1996, 381 (6579) : 215 - 217
  • [3] A method for synchronizing chaos and hyperchaos by single driving variable
    Cheng, L
    Zhang, RY
    Peng, JH
    [J]. ACTA PHYSICA SINICA, 2003, 52 (03) : 536 - 541
  • [4] AN ANALYTIC APPROACH TO PRACTICAL STATE-SPACE RECONSTRUCTION
    GIBSON, JF
    FARMER, JD
    CASDAGLI, M
    EUBANK, S
    [J]. PHYSICA D, 1992, 57 (1-2): : 1 - 30
  • [5] Parameters identification and control of Lorenz chaotic system
    Guan, XP
    Peng, HP
    Li, LX
    Wang, YQ
    [J]. ACTA PHYSICA SINICA, 2001, 50 (01) : 26 - 29
  • [6] DETERMINING EMBEDDING DIMENSION FOR PHASE-SPACE RECONSTRUCTION USING A GEOMETRICAL CONSTRUCTION
    KENNEL, MB
    BROWN, R
    ABARBANEL, HDI
    [J]. PHYSICAL REVIEW A, 1992, 45 (06): : 3403 - 3411
  • [7] Detecting nonlinearity of action surface EMG signal
    Lei, M
    Wang, ZZ
    Feng, ZJ
    [J]. PHYSICS LETTERS A, 2001, 290 (5-6) : 297 - 303
  • [8] LEI M, 2002, CHAOTIC TIME SERIES
  • [9] SINGULAR-VALUE DECOMPOSITION IN ATTRACTOR RECONSTRUCTION - PITFALLS AND PRECAUTIONS
    PALUS, M
    DVORAK, I
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1992, 55 (1-2) : 221 - 234
  • [10] Using surrogate data analysis for unmasking chaotic communication systems
    Parlitz, U
    Kocarev, L
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02): : 407 - 413