Periodicity as condition to noise robustness for chaotic maps with piecewise constant invariant density

被引:0
|
作者
Pareschi, Fabio
Rovatti, Riccardo
Setti, Gianluca
机构
[1] Univ Bologna, ARCES, I-40125 Bologna, Italy
[2] Univ Ferrara, ENDIF, I-44100 Ferrara, Italy
[3] Univ Bologna, DEIS, I-40136 Bologna, Italy
来源
关键词
chaotic maps; robustness; design implementation;
D O I
10.1142/S0218127406016872
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaotic maps represent an effective method of generating random-like sequences, that combines the benefits of relying on simple, causal models with good unpredictability. However, since chaotic maps behavior is generally strongly dependent on unavoidable implementation errors and external perturbations, the possibility of guaranteeing map statistical robustness is of great practical concern. Here we present a technique to guarantee the independence of the first-order statistics of external perturbations, modeled as an additive, map-independent random variable. The developed criterion applies to a quite general class of maps.
引用
收藏
页码:3391 / 3400
页数:10
相关论文
共 22 条
  • [1] Noise robustness condition for chaotic maps with piecewise constant invariant density
    Pareschi, F
    Setti, G
    Rovatti, R
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 4, PROCEEDINGS, 2004, : 681 - 684
  • [2] ON THE EVENTUAL PERIODICITY OF PIECEWISE LINEAR CHAOTIC MAPS
    Khan, M. Ali
    Rajan, Ashvin V.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (03) : 467 - 475
  • [3] Piecewise Monotonic Maps with a Common Piecewise Constant Stationary Density
    Wang, Zi
    Ding, Jiu
    Rhee, Noah
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (08)
  • [4] Piecewise Monotonic Maps with a Common Piecewise Constant Stationary Density
    Zi Wang
    Jiu Ding
    Noah Rhee
    Journal of Statistical Physics, 190
  • [5] SYNTHESIS OF PIECEWISE-LINEAR CHAOTIC MAPS: INVARIANT DENSITIES, AUTOCORRELATIONS, AND SWITCHING
    Rogers, Alan
    Shorten, Robert
    Heffernan, Daniel M.
    Naughton, David
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08): : 2169 - 2189
  • [6] An efficient and accurate method for computing the invariant measure of piecewise affine chaotic maps
    Addabbo, Tommaso
    Fort, Ada
    Rocchi, Santina
    Vignoli, Valerio
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 760 - 763
  • [7] Noise-amplitude dependence of the invariant density for noisy, fully chaotic one-dimensional maps
    Seshadri, S
    Balakrishnan, V
    Lakshmibala, S
    PHYSICAL REVIEW E, 1999, 60 (01): : 386 - 390
  • [8] Noise-amplitude dependence of the invariant density for noisy, fully chaotic one-dimensional maps
    Seshadri, S.
    Balakrishnan, V.
    Lakshmibala, S.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60 (01):
  • [9] The invariant density of a chaotic dynamical system with small noise
    Kuske, R
    Papanicolaou, G
    PHYSICA D, 1998, 120 (3-4): : 255 - 272
  • [10] A piecewise constant switched chaotic circuit with rect-rippling return maps
    Matsuoka, Y
    Saito, T
    Torikai, H
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 3411 - 3414