Implementation of Controlled-NOT Gate by Lyapunov Control

被引:4
|
作者
Liu, Shuai [1 ,2 ]
Ran, Du [1 ,2 ]
Shi, Zhi-Cheng [1 ,2 ]
Song, Jie [3 ]
Xia, Yan [1 ,2 ]
机构
[1] Fuzhou Univ, Dept Phys, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Fujian Key Lab Quantum Informat & Quantum Opt, Fuzhou 350116, Fujian, Peoples R China
[3] Harbin Inst Technol, Dept Phys, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
cavity QED; controlled-NOT gate; Lyapunov control; STEADY-STATE ENTANGLEMENT; QUANTUM INFORMATION; UNIVERSAL; DISSIPATION; ATOMS;
D O I
10.1002/andp.201900086
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A scheme to implement the controlled-NOT (CNOT) gate for quantum systems is proposed, which is based on Lyapunov control. The scheme does not require precise control of the interaction time since the system is stable when the control fields vanish. In particular, the control fields can be easily obtained by most initial states. As an example, the CNOT gate is realized for two atoms trapped in an optical cavity by exploiting two disturbance cases. Compared to continuous disturbance, the fidelity of the CNOT gate is higher under impulsive disturbance, however, interaction times are much longer. Numerical simulations indicate that the scheme is robust against variations of control parameters and decoherence caused by atomic spontaneous emission and cavity decay. Therefore, the scheme may provide useful applications in quantum computation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fibre implementation of a Controlled-NOT gate
    Fulconis, J.
    Clark, A.
    Rarity, J. G.
    O'Brien, J. L.
    Wadsworth, W. J.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3171 - +
  • [2] Implementation of a controlled-NOT gate using superconducting quantum interference devices
    Ma Chi
    Zhang Shi-Jun
    He Juan
    Ye Liu
    CHINESE PHYSICS LETTERS, 2008, 25 (02) : 383 - 385
  • [3] Implementation of a controlled-NOT gate using superconducting quantum interference devices
    School of Physics and Material Science, Anhui University, Hefei 230039, China
    不详
    Chin. Phys. Lett., 2008, 2 (383-385):
  • [4] Universal quantum Controlled-NOT gate
    M. Siomau
    S. Fritzsche
    The European Physical Journal D, 2010, 60 : 417 - 421
  • [5] Universal quantum Controlled-NOT gate
    Siomau, M.
    Fritzsche, S.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (02): : 417 - 421
  • [6] Implementation of a generalized controlled-NOT gate between fixed-frequency transmons
    Premaratne, Shavindra P.
    Yeh, Jen-Hao
    Wellstood, F. C.
    Palmer, B. S.
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [7] Implementation of non-local quantum controlled-NOT gate with multiple targets
    陈立冰
    路洪
    Chinese Optics Letters, 2004, (04) : 235 - 238
  • [8] Implementation of Nonlocal Controlled-NOT Gate via a Cavity Input-Output Process
    Ma, Xiao-Hui
    Zhang, Shen
    Wang, Hong-Fu
    Yeon, Kyu-Hwang
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 53 (06) : 3140 - 3143
  • [9] Controlled-NOT gate operating with single photons
    Pooley, M. A.
    Ellis, D. J. P.
    Patel, R. B.
    Bennett, A. J.
    Chan, K. H. A.
    Farrer, I.
    Ritchie, D. A.
    Shields, A. J.
    APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [10] Quantum process tomography of a controlled-NOT gate
    O'Brien, JL
    Pryde, GJ
    Gilchrist, A
    James, DFV
    Langford, NK
    Ralph, TC
    White, AG
    PHYSICAL REVIEW LETTERS, 2004, 93 (08) : 080502 - 1