Cell-Type-Specific Optogenetic Techniques Reveal Neural Circuits Crucial for Episodic Memories

被引:4
|
作者
Yamamoto, Naoki [1 ]
Marks, William D. [1 ]
Kitamura, Takashi [1 ,2 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Psychiat, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Neurosci, Dallas, TX 75390 USA
基金
日本学术振兴会;
关键词
Optogenetics; Hippocampus; Entorhinal cortex; Episodic memory; Neural circuit; Memory engram; Synaptic plasticity; Systems consolidation of memory; DENTATE GYRUS; HIPPOCAMPAL CA1; SYSTEMS CONSOLIDATION; SYNAPTIC-TRANSMISSION; RETROGRADE-AMNESIA; PATTERN SEPARATION; OPTICAL CONTROL; NMDA RECEPTORS; GRANULE CELLS; ENGRAM CELLS;
D O I
10.1007/978-981-15-8763-4_28
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The formation and maintenance of episodic memories are important for our daily life. Accumulating evidence from extensive studies with pharmacological, electrophysiological, and molecular biological approaches has shown that both entorhinal cortex (EC) and hippocampus (HPC) are crucial for the formation and recall of episodic memory. However, to further understand the neural mechanisms of episodic memory processes in the EC-HPC network, cell-type-specific manipulation of neural activity with high temporal resolution during memory process has become necessary. Recently, the technological innovation of optogenetics combined with pharmacological, molecular biological, and electrophysiological approaches has significantly advanced our understanding of the circuit mechanisms for learning and memory. Optogenetic techniques with transgenic mice and/or viral vectors enable us to manipulate the neural activity of specific cell populations as well as specific neural projections with millisecond-scale temporal control during animal behavior. Integrating optogenetics with drug-regulatable activity-dependent gene expression systems has identified memory engram cells, which are a subpopulation of cells that encode a specific episode. Finally, millisecond pulse stimulation of neural activity by optogenetics has further achieved (a) identification of synaptic connectivity between targeted pairs of neural populations, (b) cell-type-specific single-unit electrophysiological recordings, and (c) artificial induction and modification of synaptic plasticity in targeted synapses. In this chapter, we summarize technological and conceptual advancements in the field of neurobiology of learning and memory as revealed by optogenetic approaches in the rodent EC-HPC network for episodic memories.
引用
收藏
页码:429 / 447
页数:19
相关论文
共 50 条
  • [1] Cell type–specific genetic and optogenetic tools reveal hippocampal CA2 circuits
    Keigo Kohara
    Michele Pignatelli
    Alexander J Rivest
    Hae-Yoon Jung
    Takashi Kitamura
    Junghyup Suh
    Dominic Frank
    Koichiro Kajikawa
    Nathan Mise
    Yuichi Obata
    Ian R Wickersham
    Susumu Tonegawa
    Nature Neuroscience, 2014, 17 : 269 - 279
  • [2] Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits
    Kohara, Keigo
    Pignatelli, Michele
    Rivest, Alexander J.
    Jung, Hae-Yoon
    Kitamura, Takashi
    Suh, Junghyup
    Frank, Dominic
    Kajikawa, Koichiro
    Mise, Nathan
    Obata, Yuichi
    Wickersham, Ian R.
    Tonegawa, Susumu
    NATURE NEUROSCIENCE, 2014, 17 (02) : 269 - 279
  • [3] Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories
    Roy, Dheeraj S.
    Kitamura, Takashi
    Okuyama, Teruhiro
    Ogawa, Sachie K.
    Sun, Chen
    Obata, Yuichi
    Yoshiki, Atsushi
    Tonegawa, Susumu
    CELL, 2017, 170 (05) : 1000 - +
  • [4] Dopaminergic neurons write and update memories with cell-type-specific rules
    Aso, Yoshinori
    Rubin, Gerald M.
    ELIFE, 2016, 5
  • [5] In vivo magnetogenetics for cell-type-specific targeting and modulation of brain circuits
    Choi, Seo-Hyun
    Shin, Jihye
    Park, Chanhyun
    Lee, Jung-uk
    Lee, Jaegyeong
    Ambo, Yuko
    Shin, Wookjin
    Yu, Ri
    Kim, Ju-Young
    Lah, Jungsu David
    Shin, Donghun
    Kim, Gooreum
    Noh, Kunwoo
    Koh, Wuhyun
    Lee, C. Justin
    Lee, Jae-Hyun
    Kwak, Minsuk
    Cheon, Jinwoo
    NATURE NANOTECHNOLOGY, 2024, 19 (09) : 1333 - 1343
  • [6] Cortical somatostatin interneuron subtypes form cell-type-specific circuits
    Wu, Sherry Jingjing
    Sevier, Elaine
    Dwivedi, Deepanjali
    Saldi, Giuseppe-Antonio
    Hairston, Ariel
    Yu, Sabrina
    Abbott, Lydia
    Choi, Da Hae
    Sherer, Mia
    Qiu, Yanjie
    Shinde, Ashwini
    Lenahan, Mackenzie
    Rizzo, Daniella
    Xu, Qing
    Barrera, Irving
    Kumar, Vipin
    Marrero, Giovanni
    Pronneke, Alvar
    Huang, Shuhan
    Kullander, Klas
    Stafford, David A.
    Macosko, Evan
    Chen, Fei
    Rudy, Bernardo
    Fishell, Gord
    NEURON, 2023, 111 (17) : 2675 - +
  • [7] Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia
    Roseberry, Thomas K.
    Lee, A. Moses
    Lalive, Arnaud L.
    Wilbrecht, Linda
    Bonci, Antonello
    Kreitzer, Anatol C.
    CELL, 2016, 164 (03) : 526 - 537
  • [8] Anxiety-related cell-type-specific neural circuits in the anterior-dorsal bed nucleus of the stria terminalis
    Wang, Xinxin
    Zhang, Yongsheng
    Wang, Xu
    Dai, Jiaqi
    Hua, Ruifang
    Zeng, Shaoqun
    Li, Haohong
    SCIENCE BULLETIN, 2020, 65 (14) : 1203 - 1216
  • [9] Cell-type-specific optogenetic fMRI on basal forebrain reveals functional network basis of behavioral preference
    Zou, Yijuan
    Tong, Chuanjun
    Peng, Wanling
    Qiu, Yue
    Li, Jiangxue
    Xia, Ying
    Pei, Mengchao
    Zhang, Kaiwei
    Li, Weishuai
    Xu, Min
    Liang, Zhifeng
    NEURON, 2024, 112 (08) : 1342 - 1357.e6
  • [10] Cell-type-specific metabolism in plants
    Daloso, Danilo de Menezes
    Morais, Eva Gomes
    Oliveira e Silva, Karen Fernanda
    Williams, Thomas Christopher Rhys
    PLANT JOURNAL, 2023, 114 (05): : 1093 - 1114