On group vertex magic graphs

被引:3
|
作者
Kamatchi, N. [1 ]
Paramasivam, K. [2 ]
Prajeesh, A. V. [2 ]
Sabeel, K. Muhammed [2 ]
Arumugam, S. [3 ]
机构
[1] Kamaraj Coll Engn & Technol, Dept Math, Virudunagar 625701, India
[2] Natl Inst Technol Calicut, Dept Math, Kozhikode 673601, India
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Anand Nagar 626126, Gujarat, India
关键词
A-vertex magic; Group vertex magic graph; Weight of a vertex; Tree;
D O I
10.1016/j.akcej.2019.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G=(V(G),E(G)) be a simple undirected graph and let A be an additive abelian group with identity 0. A mapping l:V(G)-> A\{0} is said to be a A-vertex magic labeling of G if there exists an element mu of A such that w(v)=Sigma u is an element of N(v)l(u)=mu for any vertex v of G, where N(v) is the open neighborhood of v. A graph G that admits such a labeling is called an A-vertex magic graph. If G is A-vertex magic graph for any nontrivial abelian group A, then G is called a group vertex magic graph. In this paper, we obtain a few necessary conditions for a graph to be group vertex magic. Further, when AZ2 circle plus Z2, we give a characterization of trees with diameter at most 4 which are A-vertex magic.
引用
收藏
页码:461 / 465
页数:5
相关论文
共 50 条
  • [1] On the products of group vertex magic graphs
    Balamoorthy, S.
    Bharanedhar, S., V
    Kamatchi, N.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 268 - 275
  • [2] Magic graphs having a saturated vertex
    Semanicova, Andrea
    GRAPHS '04, 2007, 36 : 121 - 128
  • [3] Super Vertex Magic Circulant Graphs
    不详
    UTILITAS MATHEMATICA, 2019, 110 : 315 - 326
  • [4] Most wheel related graphs are not vertex magic
    Rahim, M. T.
    Slamin
    UTILITAS MATHEMATICA, 2008, 77 : 193 - 199
  • [5] Vertex-magic total labelings of graphs
    MacDougall, JA
    Miller, M
    Slamin
    Wallis, WD
    UTILITAS MATHEMATICA, 2002, 61 : 3 - 21
  • [6] Vertex Magic Total Labelings of Complete Graphs
    Krishnappa, H. K.
    Kothapalli, Kishore
    Venkaiah, V. Ch.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2009, 6 (01) : 143 - 154
  • [7] Note on E-super vertex magic graphs
    Wang, Tao-Ming
    Zhang, Guang-Hui
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 160 - 162
  • [8] Vertex-magic total labelings of regular graphs
    Gray, Ian D.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 170 - 177
  • [9] Vertex-magic labelings of regular graphs II
    Gray, I. D.
    MacDougall, J. A.
    DISCRETE MATHEMATICS, 2009, 309 (20) : 5986 - 5999
  • [10] E-super vertex magic labelings of graphs
    Marimuthu, G.
    Balakrishnan, M.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) : 1766 - 1774