MRI-Derived Radiomics to Guide Post-operative Management for High-Risk Prostate Cancer

被引:45
|
作者
Bourbonne, Vincent [1 ,2 ,3 ]
Vallieres, Martin [2 ,4 ]
Lucia, Francois [1 ,2 ,3 ]
Doucet, Laurent [5 ]
Visvikis, Dimitris [2 ]
Tissot, Valentin [6 ]
Pradier, Olivier [1 ,2 ,3 ]
Hatt, Mathieu [2 ]
Schick, Ulrike [1 ,2 ,3 ]
机构
[1] Univ Hosp, Dept Radiat Oncol, Brest, France
[2] Brest Univ, LaTIM, INSERM, UMR 1101, Brest, France
[3] Univ Bretagne Occidentale, Brest, France
[4] McGill Univ, Med Phys Unit, Montreal, PQ, Canada
[5] Univ Hosp, Dept Anatomopathol, Brest, France
[6] Univ Hosp, Dept Radiol, Brest, France
来源
FRONTIERS IN ONCOLOGY | 2019年 / 9卷
关键词
magnetic resonance imaging; prostatic neoplasms; radiomics; machine learning; treatment failure; SALVAGE RADIATION-THERAPY; RADICAL PROSTATECTOMY; BIOCHEMICAL RECURRENCE; RADIOTHERAPY; PREDICTION; SURVIVAL; FEATURES; OUTCOMES;
D O I
10.3389/fonc.2019.00807
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Prostatectomy is one of the main therapeutic options for prostate cancer (PCa). Studies proved the benefit of adjuvant radiotherapy (aRT) on clinical outcomes, with more toxicities when compared to salvage radiotherapy. A better assessment of the likelihood of biochemical recurrence (BCR) would rationalize performing aRT. Our goal was to assess the prognostic value of MRI-derived radiomics on BCR for PCa with high recurrence risk. Methods: We retrospectively selected patients with a high recurrence risk (T3a/b or T4 and/or R1 and/or Gleason score>7) and excluded patients with a post-operative PSA > 0.04 ng/mL or a lymph-node involvement. We extracted IBSI-compliant radiomic features (shape and first order intensity metrics, as well as second and third order textural features) from tumors delineated in T2 and ADC sequences. After random division (training and testing sets) and machine learning based feature reduction, a univariate and multivariate Cox regression analysis was performed to identify independent factors. The correlation with BCR was assessed using AUC and prediction of biochemical relapse free survival (bRFS) with a Kaplan-Meier analysis. Results: One hundred seven patients were included. With a median follow-up of 52.0 months, 17 experienced BCR. In the training set, no clinical feature was correlated with BCR. One feature from ADC (SZE(GLSZM)) outperformed with an AUC of 0.79 and a HR 17.9 (p = 0.0001). Lower values of SZE(GLSZM) are associated with more heterogeneous tumors. In the testing set, this feature remained predictive of BCR and bRFS (AUC 0.76, p = 0.0236). Conclusion: One radiomic feature was predictive of BCR and bRFS after prostatectomy helping to guide post-operative management.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] MRI-derived radiomics to select patients with high-risk prostate cancer for adjuvant radiotherapy
    Bourbonne, V.
    Vallieres, M.
    Lucia, F.
    Fournier, G.
    Valeri, A.
    Visvikis, D.
    Tissot, V.
    Pradier, O.
    Hatt, M.
    Schick, U.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S451 - S452
  • [2] MRI-derived radiomics to guide post-operative management of glioblastoma: Implication for personalized radiation treatment volume delineation
    Chiesa, S.
    Russo, R.
    Bartoli, F. Beghella
    Palumbo, I.
    Sabatino, G.
    Cannata, M. C.
    Gigli, R.
    Longo, S.
    Tran, H. E.
    Boldrini, L.
    Dinapoli, N.
    Votta, C.
    Cusumano, D.
    Pignotti, F.
    Lupattelli, M.
    Camilli, F.
    Della Pepa, G. M.
    D'Alessandris, G. Q.
    Olivi, A.
    Balducci, M.
    Colosimo, C.
    Gambacorta, M. A.
    Valentini, V.
    Aristei, C.
    Gaudino, S.
    FRONTIERS IN MEDICINE, 2023, 10
  • [3] News on prostate cancer: metastases, MRI and high-risk stage post-operative management
    Ploussard, G.
    Boissier, R.
    Bessede, T.
    PROGRES EN UROLOGIE, 2012, 22 : 15 - 20
  • [4] Validation of an MRI-Derived Radiomics Model to Guide Patients Selection for Adjuvant Radiotherapy after Prostatectomy for High-Risk Prostate Cancer
    Bourbonne, V.
    Vallieres, M.
    Lucia, F.
    Doucet, L.
    Visvikis, D.
    Tissot, V.
    Cuvelier, G.
    Hue, S.
    Prigent, L.
    Bertrand, N.
    Staroz, F.
    Pradier, O.
    Hatt, M.
    Schick, U.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E266 - E267
  • [5] External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer
    Bourbonne, Vincent
    Fournier, Georges
    Vallieres, Martin
    Lucia, Francois
    Doucet, Laurent
    Tissot, Valentin
    Cuvelier, Gilles
    Hue, Stephane
    Du, Henri Le Penn
    Perdriel, Luc
    Bertrand, Nicolas
    Staroz, Frederic
    Visvikis, Dimitris
    Pradier, Olivier
    Hatt, Mathieu
    Schick, Ulrike
    CANCERS, 2020, 12 (04)
  • [6] An hypothesis generating study of MRI-Derived Radiomics on tumor and microenvironment tissue heterogeneity to guide post-operative management of glioblastoma: toward personalized radiation treatment volume delineation
    Cannata, M.
    Russo, R.
    Beghella Bartoli, F.
    Palumbo, I
    Tran, H.
    Votta, C.
    Lupattelli, M.
    Boldrini, L.
    Dinapoli, N.
    Camilli, F.
    Balducci, M.
    Gambacorta, M.
    Valentini, V.
    Aristei, C.
    Sabatino, G.
    Pignotti, F.
    Gaudino, S.
    Chiesa, S.
    NEURO-ONCOLOGY, 2022, 24
  • [7] Management of high-risk and post-operative non-metastatic prostate cancer in Catalonia: an expert Delphi consensus
    Bonet, Marta
    Gonzalez, David
    Baquedano, Jose-Enrique
    Garcia, Elena
    Altabas, Manuel
    Casas, Francesc
    Feltes, Nicolas
    Ferrer, Ferran
    Foro, Palmira
    Fuentes, Rafael
    Galdeano, Manuel
    Gomez, David
    Henriquez, Ivan
    Jove, Josep
    Lozano, Joan
    Maldonado, Xavier
    Mases, Joel
    Membrive, Ismael
    Paredes, Saturio
    Rosello, Alvar
    Sancho, Gemma
    Mira, Moises
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2023, 25 (04): : 1017 - 1023
  • [8] MRI-derived radiomics models for diagnosis, aggressiveness, and prognosis evaluation in prostate cancer
    Zhu, Xuehua
    Shao, Lizhi
    Liu, Zhenyu
    Liu, Zenan
    He, Jide
    Liu, Jiangang
    Ping, Hao
    Lu, Jian
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2023, 24 (08): : 663 - 681
  • [9] MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
    Sushentsev, Nikita
    Rundo, Leonardo
    Blyuss, Oleg
    Gnanapragasam, Vincent J.
    Sala, Evis
    Barrett, Tristan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
    Nikita Sushentsev
    Leonardo Rundo
    Oleg Blyuss
    Vincent J. Gnanapragasam
    Evis Sala
    Tristan Barrett
    Scientific Reports, 11