Turbulent-like Dynamics in the Human Brain

被引:57
|
作者
Deco, Gustavo [1 ,2 ,3 ,4 ]
Kringelbach, Morten L. [5 ,6 ,7 ]
机构
[1] Univ Pompeu Fabra, Ctr Brain & Cognit, Computat Neurosci Grp, Dept Informat & Commun Technol, Roc Boronat 138, Barcelona 08018, Spain
[2] Inst Catalana Recerca & Estudis Avancats ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
[3] Max Planck Inst Human Cognit & Brain Sci, Dept Neuropsychol, D-04103 Leipzig, Germany
[4] Monash Univ, Sch Psychol Sci, Clayton, Vic 3800, Australia
[5] Univ Oxford, Ctr Eudaimonia & Human Flourishing, Oxford, England
[6] Univ Oxford, Dept Psychiat, Oxford, England
[7] Aarhus Univ, Ctr Mus Brain, Dept Clin Med, Aarhus, Denmark
来源
CELL REPORTS | 2020年 / 33卷 / 10期
基金
欧盟地平线“2020”; 新加坡国家研究基金会;
关键词
STATE FUNCTIONAL CONNECTIVITY; CEREBRAL-CORTEX; DEFAULT-MODE; CONNECTOME; NETWORK; CRITICALITY; FMRI; MULTISTABILITY; MECHANISMS; CHAOS;
D O I
10.1016/j.celrep.2020.108471
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Turbulence facilitates fast energy/information transfer across scales in physical systems. These qualities are important for brain function, but it is currently unknown if the dynamic intrinsic backbone of the brain also exhibits turbulence. Using large-scale neuroimaging empirical data from 1,003 healthy participants, we demonstrate turbulent-like human brain dynamics. Furthermore, we build a whole-brain model with coupled oscillators to demonstrate that the best fit to the data corresponds to a region of maximally developed turbulent-like dynamics, which also corresponds to maximal sensitivity to the processing of external stimulations (information capability). The model shows the economy of anatomy by following the exponential distance rule of anatomical connections as a cost-of-wiring principle. This establishes a firm link between turbulent-like brain activity and optimal brain function. Overall, our results reveal a way of analyzing and modeling whole-brain dynamics that suggests a turbulent-like dynamic intrinsic backbone facilitating large-scale network communication.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Acceleration measurements in turbulent-like flows
    Ferrari, S.
    Rossi, L.
    Vassilicos, J. C.
    ADVANCES IN TURBULENCE XI, 2007, 117 : 485 - 487
  • [2] Rapid mixing by turbulent-like electrokinetic microflow
    Zhao, Wei
    Yang, Fang
    Wang, Kaige
    Bai, Jintao
    Wang, Guiren
    CHEMICAL ENGINEERING SCIENCE, 2017, 165 : 113 - 121
  • [3] On the Motion of Spikes: Turbulent-Like Neuronal Activity in the Human Basal Ganglia
    Andres, Daniela
    FRONTIERS IN HUMAN NEUROSCIENCE, 2018, 12
  • [4] Turbulent-like diffusion in complex quantum systems
    Kusnezov, D
    Bulgac, A
    Dang, GD
    PHYSICS LETTERS A, 1997, 234 (02) : 103 - 107
  • [5] Stability of model flocks in turbulent-like flow
    Khurana, Nidhi
    Ouellette, Nicholas T.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [6] Criteria of tracking vortex surfaces in turbulent-like flows
    Zishuo Han
    Yue Yang
    Advances in Aerodynamics, 4
  • [7] Criteria of tracking vortex surfaces in turbulent-like flows
    Han, Zishuo
    Yang, Yue
    ADVANCES IN AERODYNAMICS, 2022, 4 (01)
  • [8] Aggregate formation in 3D turbulent-like flows
    Dominguez, A.
    van Aartrijk, M.
    Del Castello, L.
    Clercx, H. J. H.
    PARTICLE-LADEN FLOW: FROM GEOPHYSICAL TO KOLMOGOROV SCALES, 2007, 11 : 359 - +
  • [9] ITERATIVE TURBULENT-LIKE SOLUTIONS OF INSTANTANEOUS NAVIER - STOKES EQUATIONS
    DEISSLER, RG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (05): : 804 - &
  • [10] Emergence of lanes and turbulent-like motion in active spinner fluid
    Cody J. Reeves
    Igor S. Aranson
    Petia M. Vlahovska
    Communications Physics, 4