Deep spatial representation learning of polyamide nanofiltration membranes

被引:20
|
作者
Zhang, Ziyang [1 ]
Luo, Yingtao [2 ]
Peng, Huawen [1 ]
Chen, Yu [3 ,4 ]
Liao, Rong-Zhen [1 ]
Zhao, Qiang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Minist Educ, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol AE, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn SEEE, Wuhan 430074, Peoples R China
关键词
Nanofiltration; Thin film composite membranes; Feature engineering; Machine learning; Data augmentation; Molecular vibration; SELECTION;
D O I
10.1016/j.memsci.2020.118910
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Machine learning overfitting caused by data scarcity greatly limits the application of chemical artificial intelligence in membrane materials. As the original data for thin film polyamide nanofiltration membranes is limited, here we propose to extract the natural features of monomer molecular structures and rationally distort them to augment the data availability. This few-shot learning method allows a chemical engineering project to leverage the powerful fit of deep learning without big data at the outset, which is advantageous over traditional machine learning models. The rejection and flux predictions of polyamide nanofiltration membranes are practiced by the molecular augmentation in deep learning. Convergence of loss function indicates that the model is effectively optimized. Correlation coefficients over 0.80 and the mean relative error below 5% prove an accurate prediction of nanofiltration performance. The success of predicting nanofiltration membrane performances is widely instructive for molecule and material science.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Revisiting the alkali hydrolysis of polyamide nanofiltration membranes
    Puhan, Manas Ranjan
    Sutariya, Bhaumik
    Karan, Santanu
    JOURNAL OF MEMBRANE SCIENCE, 2022, 661
  • [2] Modelling the amphoteric behaviour of polyamide nanofiltration membranes
    Bandini, S
    Mazzoni, C
    DESALINATION, 2005, 184 (1-3) : 327 - 336
  • [3] Selectivity of polyamide nanofiltration membranes for cations and phosphoric acid
    Niewersch, Claudia
    Meier, Kristina
    Wintgens, Thomas
    Melin, Thomas
    DESALINATION, 2010, 250 (03) : 1021 - 1024
  • [4] Degradation of Polyamide Nanofiltration and Reverse Osmosis Membranes by Hypochlorite
    Van Thanh Do
    Tang, Chuyang Y.
    Reinhard, Martin
    Leckie, James O.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) : 852 - 859
  • [5] Polyamide nanofiltration membranes to remove aniline in aqueous solutions
    Hidalgo, A. M.
    Leon, G.
    Gomez, M.
    Murcia, M. D.
    Bernal, M. D.
    Ortega, S.
    ENVIRONMENTAL TECHNOLOGY, 2014, 35 (09) : 1175 - 1181
  • [6] Nanofiltration membranes with dendritic aromatic polyamide active layers
    Gao, Yuan
    de Jubera, Ana M. Saenz
    Moore, Jeffrey S.
    Marinas, Benito J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [7] Effects of chlorine exposure on nanofiltration performance of polyamide membranes
    Wu, Dihua
    Martin, Jeff
    Du, Jennifer Runhong
    Zhang, Yufeng
    Lawless, Darren
    Feng, Xianshe
    JOURNAL OF MEMBRANE SCIENCE, 2015, 487 : 256 - 270
  • [8] Separation of humic acid with nanofiltration polyamide composite membranes
    Hwang, JE
    Jegal, J
    Lee, KH
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 86 (11) : 2847 - 2853
  • [9] Tailoring Polyamide Nanofiltration Membranes by Switching Charge of Nanocellulose Interlayers
    Fang, Yu
    Zhu, Cheng-Ye
    Han, Xiao
    Ma, Zhao-Yu
    Yang, Hao-Cheng
    Zhang, Chao
    Liang, Hong-Qing
    Yang, Xuan
    Xu, Zhi-Kang
    LANGMUIR, 2024, 40 (34) : 18233 - 18241
  • [10] Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation
    Weng, Xiao-Dan
    Ji, Yan-Li
    Ma, Rong
    Zhao, Feng-Yang
    An, Quan-Fu
    Gao, Cong-Jie
    JOURNAL OF MEMBRANE SCIENCE, 2016, 510 : 122 - 130