Constraint-based MDL principle for Semi-Supervised Classification of Time Series

被引:4
|
作者
Vo Thanh Vinh [1 ]
Duong Tuan Anh [2 ]
机构
[1] Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
[2] Ho Chi Minh City Univ Technol, Fac Comp Sci & Engn, Ho Chi Minh City, Vietnam
关键词
time series; semi-supervised classification; MDL principle; constraint-based MDL;
D O I
10.1109/KSE.2015.41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a constraint-based method for the self-training process in semi-supervised classification of time series. Our constraint uses the Minimum Description Length principle to decide whether the instance should be added into the positive set or not. If the Description Length decreases when adding the new instance, we accept to add it; otherwise, we reject it. After the constraint-based self-training process, we continue to select more positive instances in the boundary of the positive set and the negative set. For the second step, we define a safe distance which is the sum of mean and standard deviation of the distances between pairs of nearest instances in the positive set. We select more instances to add into the positive set if its distance to the positive set is less than or equal to the safe distance. Experimental results show that our novel method can provide more accurate semi-supervised classifiers of time series.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 50 条
  • [2] Some Novel Improvements for MDL-Based Semi-supervised Classification of Time Series
    Vo Thanh Vinh
    Duong Tuan Anh
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, ICCCI 2014, 2014, 8733 : 483 - 493
  • [3] Constraint-Based Semi-Supervised Dimensionality Reduction with Conflict Detection
    Chen, Binhui
    Bai, Qingyuan
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 3036 - 3040
  • [4] Combined constraint-based with metric-based in semi-supervised clustering ensemble
    Siting Wei
    Zhixin Li
    Canlong Zhang
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 1085 - 1100
  • [5] Combined constraint-based with metric-based in semi-supervised clustering ensemble
    Wei, Siting
    Li, Zhixin
    Zhang, Canlong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (07) : 1085 - 1100
  • [6] Deep Semi-supervised Learning for Time Series Classification
    Goschenhofer, Jann
    Hvingelby, Rasmus
    Ruegamer, David
    Thomas, Janek
    Wagner, Moritz
    Bischl, Bernd
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 422 - 428
  • [7] Self-supervised Learning for Semi-supervised Time Series Classification
    Jawed, Shayan
    Grabocka, Josif
    Schmidt-Thieme, Lars
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 499 - 511
  • [8] Small Sample Time Series Classification Based on Data Augmentation and Semi-supervised
    Liu, Jing-Jing
    Yao, Jie-Peng
    Wang, Zhuo
    Wang, Zhong-Yi
    Huang, Lan
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (02): : 470 - 491
  • [9] Granulation-based symbolic representation of time series and semi-supervised classification
    Meng, Jun
    Wu, LiXia
    Wang, XiuKun
    Lin, TsauYoung
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) : 3581 - 3590
  • [10] Semi-supervised time series classification method for quantum computing
    Sheir Yarkoni
    Andrii Kleshchonok
    Yury Dzerin
    Florian Neukart
    Marc Hilbert
    Quantum Machine Intelligence, 2021, 3