A Latent Semantic Analysis-based Approach to Geographic Feature Categorization from Text

被引:0
|
作者
Huang, Yuxia [1 ]
机构
[1] Texas A&M Univ Corpus Christi, Dept Comp Sci, Corpus Christi, TX 78412 USA
关键词
Geographic feature; categorization; latent semantic analysis; ONTOLOGY; NETWORK;
D O I
10.1109/ICSC.2011.15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geographic feature categorization from text addresses the need for querying and finding geographic features from text documents. Although many text classification techniques have been developed, there are limitations to apply to geographic features due to the uniqueness of the geography features. In this paper we propose a method to classify geographic features based on latent semantic analysis and domain knowledge. The empirical experiment indicates that the proposed method achieves satisfactory categorizing effectiveness.
引用
下载
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [1] Robust discriminant analysis of latent semantic feature for text categorization
    Hu, Jiani
    Deng, Weihong
    Guo, Jun
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 400 - 409
  • [2] Web text categorization based on latent semantic analysis
    Wang Jianfeng
    Yuan Jinsha
    ICCSE'2006: PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 826 - 828
  • [3] An Application of Latent Semantic Analysis for Text Categorization
    Kou, G.
    Peng, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2015, 10 (03) : 357 - 369
  • [4] Local and Global Latent Semantic Analysis for Text Categorization
    Ghanem, Khadoudja
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2014, 4 (03) : 1 - 13
  • [5] Latent semantic analysis for text categorization using neural network
    Yu, Bo
    Xu, Zong-ben
    Li, Cheng-hua
    KNOWLEDGE-BASED SYSTEMS, 2008, 21 (08) : 900 - 904
  • [6] Latent Semantic Analysis: An Approach to Understand Semantic of Text
    Kherwa, Pooja
    Bansal, Poonam
    2017 INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN COMPUTER, ELECTRICAL, ELECTRONICS AND COMMUNICATION (CTCEEC), 2017, : 870 - 874
  • [7] Local Latent Semantic Analysis Based on Support Vector Machine for Imbalanced Text Categorization
    Wan, Yuan
    Tong, Hengqing
    Deng, Yanfang
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL III, 2010, : 168 - 171
  • [8] Taking advantage of improved resource allocating network and latent semantic feature selection approach for automated text categorization
    Song, Wei
    Liang, Jiu Zhen
    He, Xiao Liang
    Chen, Peng
    APPLIED SOFT COMPUTING, 2014, 21 : 210 - 220
  • [9] Local Latent Semantic Analysis Based on Support Vector Machine for Imbalanced Text Categorization
    Wan, Yuan
    Tong, Hengqing
    Deng, Yanfang
    APPLIED INFORMATICS AND COMMUNICATION, PT III, 2011, 226 : 321 - 329
  • [10] A Latent Factor Analysis-Based Approach to Online Sparse Streaming Feature Selection
    Wu, Di
    He, Yi
    Luo, Xin
    Zhou, MengChu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (11): : 6744 - 6758