An uncountably infinite number of indecomposable totally reflexive modules

被引:6
|
作者
Takahashi, Ryo [1 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Dept Math, Kawasaki, Kanagawa 2148571, Japan
关键词
D O I
10.1017/S0027763000025836
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several years ago, Huneke and Leuschke proved a theorem solving a conjecture of Schreyer. It asserts that an excellent Cohen-Macaulay local ring of countable Cohen-Macaulay type which is complete or has uncountable residue field has at most a one-dimensional singular locus. In this paper, it is verified that the assumption of the excellent property can be removed, and the theorem is considered over an arbitrary local ring. The main purpose of this paper is to prove that the existence of a certain prime ideal and a certain totally reflexive module implies the existence of an uncountably infinite number of isomorphism classes of indecomposable totally reflexive modules.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 50 条
  • [1] On the number of indecomposable totally reflexive modules
    Takahashi, Ryo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 487 - 492
  • [2] On the number of indecomposable modules of infinite projective dimension
    Coelho, FU
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (06) : 1885 - 1893
  • [3] A Construction of Totally Reflexive Modules
    Hamid Rahmati
    Janet Striuli
    Roger Wiegand
    Algebras and Representation Theory, 2016, 19 : 103 - 111
  • [4] Totally reflexive extensions and modules
    Chen, Xiao-Wu
    JOURNAL OF ALGEBRA, 2013, 379 : 322 - 332
  • [5] A Construction of Totally Reflexive Modules
    Rahmati, Hamid
    Striuli, Janet
    Wiegand, Roger
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) : 103 - 111
  • [6] Filtrations of Totally Reflexive Modules
    Tracy, Denise A. Rangel
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (10) : 4575 - 4584
  • [7] ON THE NUMBER OF PARAMETERS OF INDECOMPOSABLE MODULES
    DELAPENA, JA
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (08): : 545 - 548
  • [8] Totally reflexive modules and Poincare series
    Gheibi, Mohsen
    Takahashi, Ryo
    JOURNAL OF ALGEBRA, 2019, 520 : 440 - 459
  • [9] On the number of injective indecomposable modules
    Brungs, HH
    Törner, G
    JOURNAL OF ALGEBRA, 2001, 235 (01) : 113 - 130
  • [10] Totally reflexive modules with respect to a semidualizing bimodule
    Zhang, Zhen
    Zhu, Xiaosheng
    Yan, Xiaoguang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 385 - 402