Asymptotics of eigenvalues for Toeplitz matrices with rational symbols that have a minimum of the 4th order

被引:1
|
作者
Barrera, Mauricio [1 ]
Grudsky, Sergei M. [1 ,2 ]
机构
[1] IPN, CINVESTAV, Dept Matemat, Ciudad De Mexico, Mexico
[2] Southern Fed Univ, Reg Math Ctr, Rostov Na Donu, Russia
关键词
Toeplitz matrix; eigenvalue; asymptotic expansions; FAST COMPUTATION; EIGENVECTORS; FORMS;
D O I
10.1080/17476933.2021.1963711
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Barrera M, Grudsky SM. Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices. In: Large truncated Toeplitz matrices, toeplitz operators, and related topics. Operator theory: advances and applications Vol. 259, Birkhauser, Cham.; 2017; p. 51-77. we have considered the problem about asymptotic formulas for all eigenvalues of T-n(a), as n goes to infinity, assuming that a is a specific model symbol with a unique zero of order 4. In this paper, we continue our investigation and we explore the case where a is a more general real-valued rational symbol with a unique zero of order 4. It should be noted that we apply a different method than the one used in Barrera M, Grudsky SM. Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices. In: Large truncated Toeplitz matrices, Toeplitz operators, and related topics. Operator theory: advances and applications Vol. 259, Birkhauser, Cham.; 2017; p. 51-77. This method coming from works Bogoya JM, Bottcher A, Grudsky SM, et al. Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. J Math Anal Appl. 2015;422(2):1308-1334 and Bogoya JM, Bottcher A, Grudsky SM, et al. Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness. In: Large truncated Toeplitz matrices, Toeplitz operators, and related topics. Operator theory: advances and applications Vol. 259, Birkhauser, Cham.; 2017. p. 179- 212, where it is considered the class of all symbols having zeros of second order and one can reduce the problem to asymptotic analysis of a nonlinear equation. As well, we construct uniform asymptotic expansions for all eigenvalues, which allow us to precise the classical results of Widom and Parter for first and very last eigenvalues.
引用
收藏
页码:556 / 580
页数:25
相关论文
共 50 条
  • [1] Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
    Dai, Hui
    Geary, Zachary
    Kadanoff, Leo P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [2] Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
    Boettcher, A.
    Bogoya, J. M.
    Grudsky, S. M.
    Maximenko, E. A.
    SBORNIK MATHEMATICS, 2017, 208 (11) : 1578 - 1601
  • [3] Asymptotics of eigenvalues of large symmetric Toeplitz matrices with smooth simple-loop symbols
    Batalshchikov, A. A.
    Grudsky, S. M.
    Malisheva, I. S.
    Mihalkovich, S. S.
    Ramirez de Arellano, E.
    Stukopin, V. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 : 292 - 335
  • [4] Asymptotics of eigenvalues of symmetric Toeplitz band matrices
    Batalshchikov, A. A.
    Grudsky, S. M.
    Stukopin, V. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 464 - 486
  • [5] On Asymptotics of Eigenvalues of Seven-Diagonal Toeplitz Matrices
    Voronin, I. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (06) : 1159 - 1166
  • [6] On the asymptotics of all eigenvalues of Hermitian Toeplitz band matrices
    Boettcher, A.
    Grudsky, S. M.
    Maksimenko, E. A.
    DOKLADY MATHEMATICS, 2009, 80 (02) : 662 - 664
  • [7] Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols
    Ekstrom, S. -E.
    Serra-Capizzano, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [8] On the asymptotics of all eigenvalues of Hermitian Toeplitz band matrices
    A. Böttcher
    S. M. Grudsky
    E. A. Maksimenko
    Doklady Mathematics, 2009, 80 : 662 - 664
  • [9] Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras
    Karlovich, Alexei Yu.
    MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 1: OPERATOR THEORY AND RELATED TOPICS, 2009, 190 : 341 - 359
  • [10] Asymptotics for the eigenvalues of Toeplitz matrices with a symbol having a power singularity
    Bogoya, Manuel
    Grudsky, Sergei M. M.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (05)