Enveloping Algebras of the Nilpotent Malcev Algebra of Dimension Five

被引:3
|
作者
Bremner, Murray R. [1 ]
Usefi, Hamid [2 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Malcev algebras; Alternative algebras; Nonassociative algebras; Universal enveloping algebras; Representation theory; Differential operators;
D O I
10.1007/s10468-009-9129-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Perez-Izquierdo and Shestakov recently extended the PBW theorem to Malcev algebras. It follows from their construction that for any Malcev algebra M over a field of characteristic not equal 2, 3 there is a representation of the universal nonassociative enveloping algebra U(M) by linear operators on the polynomial algebra P(M). For the nilpotent non-Lie Malcev algebra M of dimension 5, we use this representation to determine explicit structure constants for U (M); from this it follows that U (M) is not power-associative. We obtain a finite set of generators for the alternator ideal I (M) subset of U(M) and derive structure constants for the universal alternative enveloping algebra A (M) = U(M)/I(M), a new infinite dimensional alternative algebra. We verify that the map M -> A (M) is injective, and so M is special.
引用
收藏
页码:407 / 425
页数:19
相关论文
共 50 条
  • [1] Enveloping Algebras of the Nilpotent Malcev Algebra of Dimension Five
    Murray R. Bremner
    Hamid Usefi
    Algebras and Representation Theory, 2010, 13 : 407 - 425
  • [2] ENVELOPING ALGEBRAS OF SOLVABLE MALCEV ALGEBRAS OF DIMENSION FIVE
    Tvalavadze, Marina V.
    Bremner, Murray R.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2816 - 2837
  • [3] Enveloping algebras of Malcev algebras
    Bremner, Murray R.
    Hentzel, Irvin R.
    Peresi, Luiz A.
    Tvalavadze, Marina V.
    Usefi, Hamid
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2010, 51 (02): : 157 - 174
  • [4] Universal Enveloping Algebras of the Four-Dimensional Malcev Algebra
    Bremner, Murray R.
    Hentzel, Irvin R.
    Peresi, Luiz A.
    Usefi, Hamid
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 73 - +
  • [5] A universal enveloping algebra of Malcev superalgebras
    Barreiro, Elisabete
    PORTUGALIAE MATHEMATICA, 2011, 68 (03) : 259 - 278
  • [6] ON NILPOTENT AND SOLVABLE MALCEV ALGEBRAS
    STITZINGER, EL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (02) : 157 - 163
  • [7] THE ENVELOPING ALGEBRA CENTER GENERATORS OF SOME NILPOTENT LIE-ALGEBRAS
    PANYUKOV, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1984, (05): : 34 - 38
  • [8] Subquotients in the enveloping algebra of a nilpotent Lie algebra
    Currey, BN
    JOURNAL OF LIE THEORY, 2001, 11 (02) : 355 - 379
  • [9] Geometric classification of nilpotent Jordan algebras of dimension five
    Kashuba, Iryna
    Martin, Maria Eugenia
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (03) : 546 - 559
  • [10] Degenerations of binary Lie and nilpotent Malcev algebras
    Kaygorodov, Ivan
    Popov, Yury
    Volkov, Yury
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (11) : 4928 - 4940