Improving Multiple-Instance Learning via Disambiguation by Considering Generalization

被引:0
|
作者
Zhao, Lu [1 ]
Yu, Youjian [1 ]
Chen, Hao [1 ]
Yuan, Liming [2 ]
机构
[1] Tianjin Chengjian Univ, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Tianjin 300384, Peoples R China
来源
关键词
Multiple-instance learning; Disambiguation; Generalization ability;
D O I
10.1007/978-3-319-90802-1_37
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multiple-instance learning (MIL) is a variant of the traditional supervised learning. InMIL training examples are bags of instances and labels are associated with bags rather than individual instances. The standard MIL assumption indicates that a bag is labeled positive if at least one of its instances is labeled positive, and otherwise labeled negative. However, many MIL problems do not satisfy this assumption but the more general one that the class of a bag is jointly determined by multiple instances of the bag. To solve such problems, the authors of MILD proposed an efficient disambiguation method to identify the most discriminative instances in training bags and then converted MIL to the standard supervised learning. Nevertheless, MILD does not consider the generalization ability of its disambiguation method, leading to inferior performance compared to other baselines. In this paper, we try to improve the performance of MILD by considering the discrimination of its disambiguation method on the validation set. We have performed extensive experiments on the drug activity prediction and region-based image categorization tasks. The experimental results demonstrate that MILD outperforms other similar MIL algorithms by taking into account the generalization capability of its disambiguation method.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 50 条
  • [1] MILD: Multiple-Instance Learning via Disambiguation
    Li, Wu-Jun
    Yeung, Dit-Yan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (01) : 76 - 89
  • [2] Multiple-Instance Learning with Instance Selection via Dominant Sets
    Erdem, Aykut
    Erdem, Erkut
    SIMILARITY-BASED PATTERN RECOGNITION: FIRST INTERNATIONAL WORKSHOP, SIMBAD 2011, 2011, 7005 : 177 - 191
  • [3] Multiple-Instance Learning with Instance Selection via Dominant Sets
    Erdem, Aykut
    Erdem, Erkut
    SIMILARITY-BASED PATTERN RECOGNITION, 2011, 7005 : 177 - 191
  • [4] Multiple-instance learning via random walk
    Wang, Dong
    Li, Jianmin
    Zhang, Bo
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 473 - 484
  • [5] MILES: Multiple-Instance Learning via Embedded instance Selection
    Chen, Yixin
    Bi, Jinbo
    Wang, James Z.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) : 1931 - 1947
  • [6] Revisiting Multiple-Instance Learning Via Embedded Instance Selection
    Foulds, James
    Frank, Eibe
    AI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5360 : 300 - 310
  • [7] Multiple-Instance Learning with Instance Selection via Constructive Covering Algorithm
    Zhang, Yanping
    Zhang, Heng
    Wei, Huazhen
    Tang, Jie
    Zhao, Shu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (03) : 285 - 292
  • [8] Multiple-Instance Learning with Instance Selection via Constructive Covering Algorithm
    Yanping Zhang
    Heng Zhang
    Huazhen Wei
    Jie Tang
    Shu Zhao
    Tsinghua Science and Technology, 2014, (03) : 285 - 292
  • [9] Multiple-Instance Learning with Instance Selection via Constructive Covering Algorithm
    Yanping Zhang
    Heng Zhang
    Huazhen Wei
    Jie Tang
    Shu Zhao
    Tsinghua Science and Technology, 2014, 19 (03) : 285 - 292
  • [10] Detecting Multiple Myeloma via Generalized Multiple-Instance Learning
    Hering, Jan
    Kybic, Jan
    Lambert, Lukas
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574