Review of mid-infrared plasmonic materials

被引:179
|
作者
Zhong, Yujun [1 ]
Malagari, Shyamala Devi [1 ]
Hamilton, Travis [1 ]
Wasserman, Daniel [1 ]
机构
[1] Univ Illinois, Micro & Nanotechnol Lab, Dept Elect Engn, Urbana, IL 61822 USA
基金
美国国家科学基金会;
关键词
mid-infrared; plasmonics; optical materials; optics; photonics; GRAPHENE PLASMONICS; OPTICAL-PROPERTIES; ELECTROMAGNETIC ENERGY; WAVE-GUIDES; SURFACE; ABSORPTION; GOLD; SILVER; LIGHT; EMISSION;
D O I
10.1117/1.JNP.9.093791
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The field of plasmonics has the potential to enable unique applications in the mid-infrared (IR) wavelength range. However, as is the case regardless of wavelength, the choice of plasmonic material has significant implications for the ultimate utility of any plasmonic device or structure. In this manuscript, we review the wide range of available plasmonic and phononic materials for mid-IR wavelengths, looking in particular at transition metal nitrides, transparent conducting oxides, silicides, doped semiconductors, and even newer plasmonic materials such as graphene. We also include in our survey materials with strong mid-IR phonon resonances, such as GaN, GaP, SiC, and the perovskite SrTiO3, all of which can support plasmon-like modes over limited wavelength ranges. We will discuss the suitability of each of these plasmonic and phononic materials, as well as the more traditional noble metals for a range of structures and applications and will discuss the potential and limitations of alternative plasmonic materials at these IR wavelengths. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Making the mid-infrared nano with designer plasmonic materials
    Law, S.
    Felts, J.
    Roberts, C.
    Podolskiy, V. A.
    King, W. P.
    Wasserman, D.
    OPTOELECTRONIC DEVICES AND INTEGRATION IV, 2012, 8555
  • [2] Mid-infrared Plasmonic Inductors
    Torres, Victor
    Ortuno, Ruben
    Rodriguez-Ulibarri, Pablo
    Griol, Amadeu
    Martinez, Alejandro
    Navarro-Cia, Miguel
    Beruete, Miguel
    Sorolla, Mario
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [3] Mid-infrared plasmonic biosensing with graphene
    Rodrigo, Daniel
    Limaj, Odeta
    Janner, Davide
    Etezadi, Dordaneh
    Javier Garcia de Abajo, F.
    Pruneri, Valerio
    Altug, Hatice
    SCIENCE, 2015, 349 (6244) : 165 - 168
  • [4] Mid-infrared plasmonic multispectral filters
    Ang Wang
    Yaping Dan
    Scientific Reports, 8
  • [5] Mid-infrared plasmonic multispectral filters
    Wang, Ang
    Dan, Yaping
    SCIENTIFIC REPORTS, 2018, 8
  • [6] Mid-infrared plasmonic multispectral filters
    Wang, Ang
    Dan, Yaping
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [7] Mid-Infrared Plasmonic Power Splitters
    Ayad, Marina A.
    Swillam, Mohamed A.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (21) : 2431 - 2434
  • [8] Plasmonic antireflection surfaces for the mid-infrared
    Peters, D. W.
    Basilio, L. I.
    Loui, H.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES VI, 2007, 6480
  • [9] Mid-Infrared Plasmonic Gas Sensor
    Swillam, Mohamed A.
    El Shamy, Raghi S.
    Gan, Qiaoqiang
    Khalil, Diaa
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES VIII, 2018, 10541
  • [10] Integrated Plasmonic Waveguide at the Mid-Infrared
    Zhu, Bingqing
    Zhou, Wen
    Tsang, Hon Ki
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,