DBRS: A density-based spatial clustering method with random sampling

被引:0
|
作者
Wang, X [1 ]
Hamilton, HJ [1 ]
机构
[1] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel density-based spatial clustering method called DBRS. The algorithm can identify clusters of widely varying shapes, clusters of varying densities, clusters which depend on non-spatial attributes, and approximate clusters in very large databases. DBRS achieves these results by repeatedly picking an unclassified point at random and examining its neighborhood. A theoretical comparison of DBRS and DBSCAN, a well-known density-based algorithm, is also given in the paper.
引用
收藏
页码:563 / 575
页数:13
相关论文
共 50 条
  • [1] An improved method for density-based clustering
    Jin, Hong
    Wang, Shuliang
    Zhou, Qian
    Li, Ying
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2014, 6 (04) : 347 - 368
  • [2] An ensemble density-based clustering method
    Xia, Luning
    Jing, Jiwu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [3] A density-based spatial clustering for physical constraints
    Xin Wang
    Camilo Rostoker
    Howard J. Hamilton
    Journal of Intelligent Information Systems, 2012, 38 : 269 - 297
  • [4] Density-based spatial clustering in the presence of obstacles
    1600, Alexandria University, Alexandria, Egypt (44):
  • [5] Object Localization by Density-based Spatial Clustering
    Lu, Ya
    Zhao, Ji
    Ma, Jiayi
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [6] A density-based spatial clustering for physical constraints
    Wang, Xin
    Rostoker, Camilo
    Hamilton, Howard J.
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2012, 38 (01) : 269 - 297
  • [7] DENDIS: A new density-based sampling for clustering algorithm
    Ros, Frederic
    Guillaume, Serge
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 56 : 349 - 359
  • [8] OPSCAN: Density-based Spatial Clustering in Opportunistic Networks
    Elshafey, Ahmed E.
    Al Ayyat, Soumaia A.
    Aly, Sherif G.
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 131 - 136
  • [9] Density-based spatial clustering in the presence of obstacles and facilitators
    Wang, X
    Rostoker, C
    Hamilton, HJ
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 446 - 458
  • [10] A Clustering Density-Based Sample Reduction Method
    Mohammadi, Mahdi
    Raahemi, Bijan
    Akbari, Ahmad
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2014, 2014, 8436 : 319 - 325