Fuzzy ARTMAP classification of global land cover from AVHRR data set

被引:0
|
作者
Gopal, S [1 ]
Woodcock, CE [1 ]
Strahler, AH [1 ]
机构
[1] BOSTON UNIV,CTR REMOTE SENSING,BOSTON,MA 02215
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
引用
收藏
页码:538 / 540
页数:3
相关论文
共 50 条
  • [1] Fuzzy neural network classification of global land cover from a 1° AVHRR data set
    Gopal, S
    Woodcock, CE
    Strahler, AH
    REMOTE SENSING OF ENVIRONMENT, 1999, 67 (02) : 230 - 243
  • [2] Land cover classification methods for multiyear AVHRR data
    Liang, SL
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 2521 - 2523
  • [3] Global discrimination of land cover types from metrics derived from AVHRR pathfinder data
    DeFries, R
    Hansen, M
    Townshend, J
    REMOTE SENSING OF ENVIRONMENT, 1995, 54 (03) : 209 - 222
  • [4] AVHRR channel selection for land cover classification
    Maxwell, SK
    Hoffer, RM
    Chapman, PL
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (23) : 5061 - 5073
  • [5] The 1-KM AVHRR global land data set: An update
    Eidenshink, JC
    Faundeen, JL
    Gallo, KP
    EIGHTH CONFERENCE ON SATELLITE METEOROLOGY AND OCEANOGRAPHY, 1996, : 321 - 322
  • [6] Characterization of North American land cover from NOAA-AVHRR data using the EOS MODIS land cover classification algorithm
    Friedl, MA
    Muchoney, D
    McIver, D
    Gao, F
    Hodges, JCF
    Strahler, AH
    GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (07) : 977 - 980
  • [7] Land cover of the BOREAS region from AVHRR and Landsat data
    Canada Cent of Remote Sensing, Ottawa, Canada
    Can J Remote Sens, 2 (163-175):
  • [8] Land-cover classification methods for multi-year AVHRR data
    Liang, S
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (08) : 1479 - 1493
  • [9] FUZZY COMPREHENSIVE EVALUATION OF LAND COVER CLASSIFICATION DATA
    Luo Fujun
    Li Cheng
    Yan Yinghua
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 657 - 663