An Extension of the Hajnal-Szemeredi Theorem to Directed Graphs

被引:10
|
作者
Czygrinow, Andrzej [1 ]
DeBiasio, Louis [2 ]
Kierstead, H. A. [1 ]
Molla, Theodore [3 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Miami Univ, Oxford, OH 45056 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2015年 / 24卷 / 05期
关键词
CYCLES; PROOF;
D O I
10.1017/S0963548314000716
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hajnal and Szemeredi proved that every graph G with vertical bar G vertical bar = ks and delta(G) >= k(s - 1) contains k disjoint s-cliques; moreover this degree bound is optimal. We extend their theorem to directed graphs by showing that every directed graph (G) over right arrow with vertical bar(G) over right arrow vertical bar = ks and delta((G) over right arrow) >= 2k(s - 1) - 1 contains k disjoint transitive tournaments on s vertices, where delta((G) over right arrow) = min(nu is an element of V((G) over right arrow))d(-)(nu) + d(+)(nu). Our result implies the Hajnal-Szemeredi theorem, and its degree bound is optimal. We also make some conjectures regarding even more general results for multigraphs and partitioning into other tournaments. One of these conjectures is supported by an asymptotic result.
引用
收藏
页码:754 / 773
页数:20
相关论文
共 50 条
  • [1] On Directed Versions of the Hajnal-Szemeredi Theorem
    Treglown, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (06): : 873 - 928
  • [2] A Multipartite Version of the Hajnal-Szemeredi Theorem for Graphs and Hypergraphs
    Lo, Allan
    Markstrom, Klas
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (01): : 97 - 111
  • [3] Variants of the Hajnal-Szemeredi theorem
    Fischer, E
    JOURNAL OF GRAPH THEORY, 1999, 31 (04) : 275 - 282
  • [4] Quadripartite version of the Hajnal-Szemeredi theorem
    Martin, Ryan
    Szemeredi, Endre
    DISCRETE MATHEMATICS, 2008, 308 (19) : 4337 - 4360
  • [5] A discrepancy version of the Hajnal-Szemeredi theorem
    Balogh, Jozsef
    Csaba, Bela
    Pluhar, Andras
    Treglown, Andrew
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (03): : 444 - 459
  • [6] A degree sequence Hajnal-Szemeredi theorem
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 118 : 13 - 43
  • [7] Approximate multipartite version of the Hajnal-Szemeredi theorem
    Csaba, Bela
    Mydlarz, Marcelo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (02) : 395 - 410
  • [8] Towards a Weighted Version of the Hajnal-Szemeredi Theorem
    Balogh, Jozsef
    Kemkes, Graeme
    Lee, Choongbum
    Young, Stephen J.
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (03): : 346 - 350
  • [9] ON A RAMSEY-TURAN VARIANT OF THE HAJNAL-SZEMEREDI THEOREM
    Nenadov, Rajko
    Pehova, Yanitsa
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1001 - 1010
  • [10] A short proof of the Hajnal-Szemeredi theorem on equitable colouring
    Kierstead, H. A.
    Kostochka, A. V.
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (02): : 265 - 270